(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n | Lt => n | Gt => m end. (** Properties of minimum on binary integer numbers *) Lemma Zmin_SS : forall n m:Z, Zsucc (Zmin n m) = Zmin (Zsucc n) (Zsucc m). Proof. intros n m; unfold Zmin in |- *; rewrite (Zcompare_succ_compat n m); elim_compare n m; intros E; rewrite E; auto with arith. Qed. Lemma Zle_min_l : forall n m:Z, Zmin n m <= n. Proof. intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E; [ apply Zle_refl | apply Zle_refl | apply Zlt_le_weak; apply Zgt_lt; exact E ]. Qed. Lemma Zle_min_r : forall n m:Z, Zmin n m <= m. Proof. intros n m; unfold Zmin in |- *; elim_compare n m; intros E; rewrite E; [ unfold Zle in |- *; rewrite E; discriminate | unfold Zle in |- *; rewrite E; discriminate | apply Zle_refl ]. Qed. Lemma Zmin_case : forall (n m:Z) (P:Z -> Set), P n -> P m -> P (Zmin n m). Proof. intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith. Qed. Lemma Zmin_or : forall n m:Z, Zmin n m = n \/ Zmin n m = m. Proof. unfold Zmin in |- *; intros; elim (n ?= m); auto. Qed. Lemma Zmin_n_n : forall n:Z, Zmin n n = n. Proof. unfold Zmin in |- *; intros; elim (n ?= n); auto. Qed. Lemma Zmin_plus : forall n m p:Z, Zmin (n + p) (m + p) = Zmin n m + p. Proof. intros x y n; unfold Zmin in |- *. rewrite (Zplus_comm x n); rewrite (Zplus_comm y n); rewrite (Zcompare_plus_compat x y n). case (x ?= y); apply Zplus_comm. Qed. (**********************************************************************) (** Maximum of two binary integer numbers *) Definition Zmax a b := match a ?= b with | Lt => b | _ => a end. (** Properties of maximum on binary integer numbers *) Ltac CaseEq name := generalize (refl_equal name); pattern name at -1 in |- *; case name. Theorem Zmax1 : forall a b, a <= Zmax a b. Proof. intros a b; unfold Zmax in |- *; CaseEq (a ?= b); simpl in |- *; auto with zarith. unfold Zle in |- *; intros H; rewrite H; red in |- *; intros; discriminate. Qed. Theorem Zmax2 : forall a b, b <= Zmax a b. Proof. intros a b; unfold Zmax in |- *; CaseEq (a ?= b); simpl in |- *; auto with zarith. intros H; (case (Zle_or_lt b a); auto; unfold Zlt in |- *; rewrite H; intros; discriminate). intros H; (case (Zle_or_lt b a); auto; unfold Zlt in |- *; rewrite H; intros; discriminate). Qed.