(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* True | Zpos (xO _) => True | Zneg (xO _) => True | _ => False end. Definition Zodd (z:Z) := match z with | Zpos xH => True | Zneg xH => True | Zpos (xI _) => True | Zneg (xI _) => True | _ => False end. Definition Zeven_bool (z:Z) := match z with | Z0 => true | Zpos (xO _) => true | Zneg (xO _) => true | _ => false end. Definition Zodd_bool (z:Z) := match z with | Z0 => false | Zpos (xO _) => false | Zneg (xO _) => false | _ => true end. Definition Zeven_odd_dec : forall z:Z, {Zeven z} + {Zodd z}. Proof. intro z. case z; [ left; compute in |- *; trivial | intro p; case p; intros; (right; compute in |- *; exact I) || (left; compute in |- *; exact I) | intro p; case p; intros; (right; compute in |- *; exact I) || (left; compute in |- *; exact I) ]. Defined. Definition Zeven_dec : forall z:Z, {Zeven z} + {~ Zeven z}. Proof. intro z. case z; [ left; compute in |- *; trivial | intro p; case p; intros; (left; compute in |- *; exact I) || (right; compute in |- *; trivial) | intro p; case p; intros; (left; compute in |- *; exact I) || (right; compute in |- *; trivial) ]. Defined. Definition Zodd_dec : forall z:Z, {Zodd z} + {~ Zodd z}. Proof. intro z. case z; [ right; compute in |- *; trivial | intro p; case p; intros; (left; compute in |- *; exact I) || (right; compute in |- *; trivial) | intro p; case p; intros; (left; compute in |- *; exact I) || (right; compute in |- *; trivial) ]. Defined. Lemma Zeven_not_Zodd : forall n:Z, Zeven n -> ~ Zodd n. Proof. intro z; destruct z; [ idtac | destruct p | destruct p ]; compute in |- *; trivial. Qed. Lemma Zodd_not_Zeven : forall n:Z, Zodd n -> ~ Zeven n. Proof. intro z; destruct z; [ idtac | destruct p | destruct p ]; compute in |- *; trivial. Qed. Lemma Zeven_Sn : forall n:Z, Zodd n -> Zeven (Zsucc n). Proof. intro z; destruct z; unfold Zsucc in |- *; [ idtac | destruct p | destruct p ]; simpl in |- *; trivial. unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto. Qed. Lemma Zodd_Sn : forall n:Z, Zeven n -> Zodd (Zsucc n). Proof. intro z; destruct z; unfold Zsucc in |- *; [ idtac | destruct p | destruct p ]; simpl in |- *; trivial. unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto. Qed. Lemma Zeven_pred : forall n:Z, Zodd n -> Zeven (Zpred n). Proof. intro z; destruct z; unfold Zpred in |- *; [ idtac | destruct p | destruct p ]; simpl in |- *; trivial. unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto. Qed. Lemma Zodd_pred : forall n:Z, Zeven n -> Zodd (Zpred n). Proof. intro z; destruct z; unfold Zpred in |- *; [ idtac | destruct p | destruct p ]; simpl in |- *; trivial. unfold Pdouble_minus_one in |- *; case p; simpl in |- *; auto. Qed. Hint Unfold Zeven Zodd: zarith. (**********************************************************************) (** [Zdiv2] is defined on all [Z], but notice that for odd negative integers it is not the euclidean quotient: in that case we have [n = 2*(n/2)-1] *) Definition Zdiv2 (z:Z) := match z with | Z0 => 0%Z | Zpos xH => 0%Z | Zpos p => Zpos (Pdiv2 p) | Zneg xH => 0%Z | Zneg p => Zneg (Pdiv2 p) end. Lemma Zeven_div2 : forall n:Z, Zeven n -> n = (2 * Zdiv2 n)%Z. Proof. intro x; destruct x. auto with arith. destruct p; auto with arith. intros. absurd (Zeven (Zpos (xI p))); red in |- *; auto with arith. intros. absurd (Zeven 1); red in |- *; auto with arith. destruct p; auto with arith. intros. absurd (Zeven (Zneg (xI p))); red in |- *; auto with arith. intros. absurd (Zeven (-1)); red in |- *; auto with arith. Qed. Lemma Zodd_div2 : forall n:Z, (n >= 0)%Z -> Zodd n -> n = (2 * Zdiv2 n + 1)%Z. Proof. intro x; destruct x. intros. absurd (Zodd 0); red in |- *; auto with arith. destruct p; auto with arith. intros. absurd (Zodd (Zpos (xO p))); red in |- *; auto with arith. intros. absurd (Zneg p >= 0)%Z; red in |- *; auto with arith. Qed. Lemma Zodd_div2_neg : forall n:Z, (n <= 0)%Z -> Zodd n -> n = (2 * Zdiv2 n - 1)%Z. Proof. intro x; destruct x. intros. absurd (Zodd 0); red in |- *; auto with arith. intros. absurd (Zneg p >= 0)%Z; red in |- *; auto with arith. destruct p; auto with arith. intros. absurd (Zodd (Zneg (xO p))); red in |- *; auto with arith. Qed. Lemma Z_modulo_2 : forall n:Z, {y : Z | n = (2 * y)%Z} + {y : Z | n = (2 * y + 1)%Z}. Proof. intros x. elim (Zeven_odd_dec x); intro. left. split with (Zdiv2 x). exact (Zeven_div2 x a). right. generalize b; clear b; case x. intro b; inversion b. intro p; split with (Zdiv2 (Zpos p)). apply (Zodd_div2 (Zpos p)); trivial. unfold Zge, Zcompare in |- *; simpl in |- *; discriminate. intro p; split with (Zdiv2 (Zpred (Zneg p))). pattern (Zneg p) at 1 in |- *; rewrite (Zsucc_pred (Zneg p)). pattern (Zpred (Zneg p)) at 1 in |- *; rewrite (Zeven_div2 (Zpred (Zneg p))). reflexivity. apply Zeven_pred; assumption. Qed. Lemma Zsplit2 : forall n:Z, {p : Z * Z | let (x1, x2) := p in n = (x1 + x2)%Z /\ (x1 = x2 \/ x2 = (x1 + 1)%Z)}. Proof. intros x. elim (Z_modulo_2 x); intros [y Hy]; rewrite Zmult_comm in Hy; rewrite <- Zplus_diag_eq_mult_2 in Hy. exists (y, y); split. assumption. left; reflexivity. exists (y, (y + 1)%Z); split. rewrite Zplus_assoc; assumption. right; reflexivity. Qed.