(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 1%positive | xO a' => xO (floor_pos a') | xI b' => xO (floor_pos b') end. Definition floor (a:positive) := Zpos (floor_pos a). Lemma floor_gt0 : forall p:positive, floor p > 0. Proof. intro. compute in |- *. trivial. Qed. Lemma floor_ok : forall p:positive, floor p <= Zpos p < 2 * floor p. Proof. unfold floor in |- *. intro a; induction a as [p| p| ]. simpl in |- *. repeat rewrite BinInt.Zpos_xI. rewrite (BinInt.Zpos_xO (xO (floor_pos p))). rewrite (BinInt.Zpos_xO (floor_pos p)). omega. simpl in |- *. repeat rewrite BinInt.Zpos_xI. rewrite (BinInt.Zpos_xO (xO (floor_pos p))). rewrite (BinInt.Zpos_xO (floor_pos p)). rewrite (BinInt.Zpos_xO p). omega. simpl in |- *; omega. Qed. (**********************************************************************) (** Two more induction principles over [Z]. *) Theorem Z_lt_abs_rec : forall P:Z -> Set, (forall n:Z, (forall m:Z, Zabs m < Zabs n -> P m) -> P n) -> forall n:Z, P n. Proof. intros P HP p. set (Q := fun z => 0 <= z -> P z * P (- z)) in *. cut (Q (Zabs p)); [ intros | apply (Z_lt_rec Q); auto with zarith ]. elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith. unfold Q in |- *; clear Q; intros. apply pair; apply HP. rewrite Zabs_eq; auto; intros. elim (H (Zabs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. rewrite Zabs_non_eq; auto with zarith. rewrite Zopp_involutive; intros. elim (H (Zabs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. Qed. Theorem Z_lt_abs_induction : forall P:Z -> Prop, (forall n:Z, (forall m:Z, Zabs m < Zabs n -> P m) -> P n) -> forall n:Z, P n. Proof. intros P HP p. set (Q := fun z => 0 <= z -> P z /\ P (- z)) in *. cut (Q (Zabs p)); [ intros | apply (Z_lt_induction Q); auto with zarith ]. elim (Zabs_dec p); intro eq; rewrite eq; elim H; auto with zarith. unfold Q in |- *; clear Q; intros. split; apply HP. rewrite Zabs_eq; auto; intros. elim (H (Zabs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. rewrite Zabs_non_eq; auto with zarith. rewrite Zopp_involutive; intros. elim (H (Zabs m)); intros; auto with zarith. elim (Zabs_dec m); intro eq; rewrite eq; trivial. Qed. (** To do case analysis over the sign of [z] *) Lemma Zcase_sign : forall (n:Z) (P:Prop), (n = 0 -> P) -> (n > 0 -> P) -> (n < 0 -> P) -> P. Proof. intros x P Hzero Hpos Hneg. induction x as [| p| p]. apply Hzero; trivial. apply Hpos; apply Zorder.Zgt_pos_0. apply Hneg; apply Zorder.Zlt_neg_0. Qed. Lemma sqr_pos : forall n:Z, n * n >= 0. Proof. intro x. apply (Zcase_sign x (x * x >= 0)). intros H; rewrite H; omega. intros H; replace 0 with (0 * 0). apply Zmult_ge_compat; omega. omega. intros H; replace 0 with (0 * 0). replace (x * x) with (- x * - x). apply Zmult_ge_compat; omega. ring. omega. Qed. (**********************************************************************) (** A list length in Z, tail recursive. *) Require Import List. Fixpoint Zlength_aux (acc:Z) (A:Set) (l:list A) {struct l} : Z := match l with | nil => acc | _ :: l => Zlength_aux (Zsucc acc) A l end. Definition Zlength := Zlength_aux 0. Implicit Arguments Zlength [A]. Section Zlength_properties. Variable A : Set. Implicit Type l : list A. Lemma Zlength_correct : forall l, Zlength l = Z_of_nat (length l). Proof. assert (forall l (acc:Z), Zlength_aux acc A l = acc + Z_of_nat (length l)). simple induction l. simpl in |- *; auto with zarith. intros; simpl (length (a :: l0)) in |- *; rewrite Znat.inj_S. simpl in |- *; rewrite H; auto with zarith. unfold Zlength in |- *; intros; rewrite H; auto. Qed. Lemma Zlength_nil : Zlength (A:=A) nil = 0. Proof. auto. Qed. Lemma Zlength_cons : forall (x:A) l, Zlength (x :: l) = Zsucc (Zlength l). Proof. intros; do 2 rewrite Zlength_correct. simpl (length (x :: l)) in |- *; rewrite Znat.inj_S; auto. Qed. Lemma Zlength_nil_inv : forall l, Zlength l = 0 -> l = nil. Proof. intro l; rewrite Zlength_correct. case l; auto. intros x l'; simpl (length (x :: l')) in |- *. rewrite Znat.inj_S. intros; elimtype False; generalize (Zle_0_nat (length l')); omega. Qed. End Zlength_properties. Implicit Arguments Zlength_correct [A]. Implicit Arguments Zlength_cons [A]. Implicit Arguments Zlength_nil_inv [A].