(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n = m. Proof. intros x y; destruct x as [| x'| x']; destruct y as [| y'| y']; simpl in |- *; intro H; reflexivity || (try discriminate H); [ rewrite (Pcompare_Eq_eq x' y' H); reflexivity | rewrite (Pcompare_Eq_eq x' y'); [ reflexivity | destruct ((x' ?= y')%positive Eq); reflexivity || discriminate ] ]. Qed. Lemma Zcompare_Eq_iff_eq : forall n m:Z, (n ?= m) = Eq <-> n = m. Proof. intros x y; split; intro E; [ apply Zcompare_Eq_eq; assumption | rewrite E; apply Zcompare_refl ]. Qed. Lemma Zcompare_antisym : forall n m:Z, CompOpp (n ?= m) = (m ?= n). Proof. intros x y; destruct x; destruct y; simpl in |- *; reflexivity || discriminate H || rewrite Pcompare_antisym; reflexivity. Qed. Lemma Zcompare_Gt_Lt_antisym : forall n m:Z, (n ?= m) = Gt <-> (m ?= n) = Lt. Proof. intros x y; split; intro H; [ change Lt with (CompOpp Gt) in |- *; rewrite <- Zcompare_antisym; rewrite H; reflexivity | change Gt with (CompOpp Lt) in |- *; rewrite <- Zcompare_antisym; rewrite H; reflexivity ]. Qed. (** Transitivity of comparison *) Lemma Zcompare_Gt_trans : forall n m p:Z, (n ?= m) = Gt -> (m ?= p) = Gt -> (n ?= p) = Gt. Proof. intros x y z; case x; case y; case z; simpl in |- *; try (intros; discriminate H || discriminate H0); auto with arith; [ intros p q r H H0; apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; apply lt_trans with (m := nat_of_P q); apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | intros p q r; do 3 rewrite <- ZC4; intros H H0; apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; apply lt_trans with (m := nat_of_P q); apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ]. Qed. (** Comparison and opposite *) Lemma Zcompare_opp : forall n m:Z, (n ?= m) = (- m ?= - n). Proof. intros x y; case x; case y; simpl in |- *; auto with arith; intros; rewrite <- ZC4; trivial with arith. Qed. Hint Local Resolve Pcompare_refl. (** Comparison first-order specification *) Lemma Zcompare_Gt_spec : forall n m:Z, (n ?= m) = Gt -> exists h : positive, n + - m = Zpos h. Proof. intros x y; case x; case y; [ simpl in |- *; intros H; discriminate H | simpl in |- *; intros p H; discriminate H | intros p H; exists p; simpl in |- *; auto with arith | intros p H; exists p; simpl in |- *; auto with arith | intros q p H; exists (p - q)%positive; unfold Zplus, Zopp in |- *; unfold Zcompare in H; rewrite H; trivial with arith | intros q p H; exists (p + q)%positive; simpl in |- *; trivial with arith | simpl in |- *; intros p H; discriminate H | simpl in |- *; intros q p H; discriminate H | unfold Zcompare in |- *; intros q p; rewrite <- ZC4; intros H; exists (q - p)%positive; simpl in |- *; rewrite (ZC1 q p H); trivial with arith ]. Qed. (** Comparison and addition *) Lemma weaken_Zcompare_Zplus_compatible : (forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m)) -> forall n m p:Z, (p + n ?= p + m) = (n ?= m). Proof. intros H x y z; destruct z; [ reflexivity | apply H | rewrite (Zcompare_opp x y); rewrite Zcompare_opp; do 2 rewrite Zopp_plus_distr; rewrite Zopp_neg; apply H ]. Qed. Hint Local Resolve ZC4. Lemma weak_Zcompare_Zplus_compatible : forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m). Proof. intros x y z; case x; case y; simpl in |- *; auto with arith; [ intros p; apply nat_of_P_lt_Lt_compare_complement_morphism; apply ZL17 | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith; apply nat_of_P_gt_Gt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ unfold gt in |- *; apply ZL16 | assumption ] | intros p; ElimPcompare z p; intros E; auto with arith; apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; apply ZL17 | intros p q; ElimPcompare q p; intros E; rewrite E; [ rewrite (Pcompare_Eq_eq q p E); apply Pcompare_refl | apply nat_of_P_lt_Lt_compare_complement_morphism; do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l; apply nat_of_P_lt_Lt_compare_morphism with (1 := E) | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l; exact (nat_of_P_gt_Gt_compare_morphism q p E) ] | intros p q; ElimPcompare z p; intros E; rewrite E; auto with arith; apply nat_of_P_gt_Gt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ unfold gt in |- *; apply lt_trans with (m := nat_of_P z); [ apply ZL16 | apply ZL17 ] | assumption ] | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith; simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ apply ZL16 | assumption ] | intros p q; ElimPcompare z q; intros E; rewrite E; auto with arith; simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ apply lt_trans with (m := nat_of_P z); [ apply ZL16 | apply ZL17 ] | assumption ] | intros p q; ElimPcompare z q; intros E0; rewrite E0; ElimPcompare z p; intros E1; rewrite E1; ElimPcompare q p; intros E2; rewrite E2; auto with arith; [ absurd ((q ?= p)%positive Eq = Lt); [ rewrite <- (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z); discriminate | assumption ] | absurd ((q ?= p)%positive Eq = Gt); [ rewrite <- (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z); discriminate | assumption ] | absurd ((z ?= p)%positive Eq = Lt); [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl q); discriminate | assumption ] | absurd ((z ?= p)%positive Eq = Lt); [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate | assumption ] | absurd ((z ?= p)%positive Eq = Gt); [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl q); discriminate | assumption ] | absurd ((z ?= p)%positive Eq = Gt); [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate | assumption ] | absurd ((z ?= q)%positive Eq = Lt); [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl p); discriminate | assumption ] | absurd ((p ?= q)%positive Eq = Gt); [ rewrite <- (Pcompare_Eq_eq z p E1); rewrite E0; discriminate | apply ZC2; assumption ] | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl (p - z)); auto with arith | simpl in |- *; rewrite <- ZC4; apply nat_of_P_gt_Gt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ rewrite nat_of_P_minus_morphism; [ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z); rewrite le_plus_minus_r; [ rewrite le_plus_minus_r; [ apply nat_of_P_lt_Lt_compare_morphism; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; assumption ] | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; assumption ] | apply ZC2; assumption ] | apply ZC2; assumption ] | simpl in |- *; rewrite <- ZC4; apply nat_of_P_lt_Lt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ rewrite nat_of_P_minus_morphism; [ apply plus_lt_reg_l with (p := nat_of_P z); rewrite le_plus_minus_r; [ rewrite le_plus_minus_r; [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; assumption ] | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; assumption ] | apply ZC2; assumption ] | apply ZC2; assumption ] | absurd ((z ?= q)%positive Eq = Lt); [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate | assumption ] | absurd ((q ?= p)%positive Eq = Lt); [ cut ((q ?= p)%positive Eq = Gt); [ intros E; rewrite E; discriminate | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; apply lt_trans with (m := nat_of_P z); [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ] | assumption ] | absurd ((z ?= q)%positive Eq = Gt); [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2); rewrite (Pcompare_refl p); discriminate | assumption ] | absurd ((z ?= q)%positive Eq = Gt); [ rewrite (Pcompare_Eq_eq z p E1); rewrite ZC1; [ discriminate | assumption ] | assumption ] | absurd ((z ?= q)%positive Eq = Gt); [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate | assumption ] | absurd ((q ?= p)%positive Eq = Gt); [ rewrite ZC1; [ discriminate | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; apply lt_trans with (m := nat_of_P z); [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ] | assumption ] | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); apply Pcompare_refl | simpl in |- *; apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *; rewrite nat_of_P_minus_morphism; [ rewrite nat_of_P_minus_morphism; [ apply plus_lt_reg_l with (p := nat_of_P p); rewrite le_plus_minus_r; [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P q); rewrite plus_assoc; rewrite le_plus_minus_r; [ rewrite (plus_comm (nat_of_P q)); apply plus_lt_compat_l; apply nat_of_P_lt_Lt_compare_morphism; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ] | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ] | assumption ] | assumption ] | simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism; rewrite nat_of_P_minus_morphism; [ rewrite nat_of_P_minus_morphism; [ apply plus_lt_reg_l with (p := nat_of_P q); rewrite le_plus_minus_r; [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p); rewrite plus_assoc; rewrite le_plus_minus_r; [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ] | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption ] | assumption ] | assumption ] ] ]. Qed. Lemma Zcompare_plus_compat : forall n m p:Z, (p + n ?= p + m) = (n ?= m). Proof. exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible). Qed. Lemma Zplus_compare_compat : forall (r:comparison) (n m p q:Z), (n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r. Proof. intros r x y z t; case r; [ intros H1 H2; elim (Zcompare_Eq_iff_eq x y); elim (Zcompare_Eq_iff_eq z t); intros H3 H4 H5 H6; rewrite H3; [ rewrite H5; [ elim (Zcompare_Eq_iff_eq (y + t) (y + t)); auto with arith | auto with arith ] | auto with arith ] | intros H1 H2; elim (Zcompare_Gt_Lt_antisym (y + t) (x + z)); intros H3 H4; apply H3; apply Zcompare_Gt_trans with (m := y + z); [ rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym t z); auto with arith | do 2 rewrite <- (Zplus_comm z); rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym y x); auto with arith ] | intros H1 H2; apply Zcompare_Gt_trans with (m := x + t); [ rewrite Zcompare_plus_compat; assumption | do 2 rewrite <- (Zplus_comm t); rewrite Zcompare_plus_compat; assumption ] ]. Qed. Lemma Zcompare_succ_Gt : forall n:Z, (Zsucc n ?= n) = Gt. Proof. intro x; unfold Zsucc in |- *; pattern x at 2 in |- *; rewrite <- (Zplus_0_r x); rewrite Zcompare_plus_compat; reflexivity. Qed. Lemma Zcompare_Gt_not_Lt : forall n m:Z, (n ?= m) = Gt <-> (n ?= m + 1) <> Lt. Proof. intros x y; split; [ intro H; elim_compare x (y + 1); [ intro H1; rewrite H1; discriminate | intros H1; elim Zcompare_Gt_spec with (1 := H); intros h H2; absurd ((nat_of_P h > 0)%nat /\ (nat_of_P h < 1)%nat); [ unfold not in |- *; intros H3; elim H3; intros H4 H5; absurd (nat_of_P h > 0)%nat; [ unfold gt in |- *; apply le_not_lt; apply le_S_n; exact H5 | assumption ] | split; [ elim (ZL4 h); intros i H3; rewrite H3; apply gt_Sn_O | change (nat_of_P h < nat_of_P 1)%nat in |- *; apply nat_of_P_lt_Lt_compare_morphism; change ((Zpos h ?= 1) = Lt) in |- *; rewrite <- H2; rewrite <- (fun m n:Z => Zcompare_plus_compat m n y); rewrite (Zplus_comm x); rewrite Zplus_assoc; rewrite Zplus_opp_r; simpl in |- *; exact H1 ] ] | intros H1; rewrite H1; discriminate ] | intros H; elim_compare x (y + 1); [ intros H1; elim (Zcompare_Eq_iff_eq x (y + 1)); intros H2 H3; rewrite (H2 H1); exact (Zcompare_succ_Gt y) | intros H1; absurd ((x ?= y + 1) = Lt); assumption | intros H1; apply Zcompare_Gt_trans with (m := Zsucc y); [ exact H1 | exact (Zcompare_succ_Gt y) ] ] ]. Qed. (** Successor and comparison *) Lemma Zcompare_succ_compat : forall n m:Z, (Zsucc n ?= Zsucc m) = (n ?= m). Proof. intros n m; unfold Zsucc in |- *; do 2 rewrite (fun t:Z => Zplus_comm t 1); rewrite Zcompare_plus_compat; auto with arith. Qed. (** Multiplication and comparison *) Lemma Zcompare_mult_compat : forall (p:positive) (n m:Z), (Zpos p * n ?= Zpos p * m) = (n ?= m). Proof. intros x; induction x as [p H| p H| ]; [ intros y z; cut (Zpos (xI p) = Zpos p + Zpos p + 1); [ intros E; rewrite E; do 4 rewrite Zmult_plus_distr_l; do 2 rewrite Zmult_1_l; apply Zplus_compare_compat; [ apply Zplus_compare_compat; apply H | trivial with arith ] | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ] | intros y z; cut (Zpos (xO p) = Zpos p + Zpos p); [ intros E; rewrite E; do 2 rewrite Zmult_plus_distr_l; apply Zplus_compare_compat; apply H | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ] | intros y z; do 2 rewrite Zmult_1_l; trivial with arith ]. Qed. (** Reverting [x ?= y] to trichotomy *) Lemma rename : forall (A:Set) (P:A -> Prop) (x:A), (forall y:A, x = y -> P y) -> P x. Proof. auto with arith. Qed. Lemma Zcompare_elim : forall (c1 c2 c3:Prop) (n m:Z), (n = m -> c1) -> (n < m -> c2) -> (n > m -> c3) -> match n ?= m with | Eq => c1 | Lt => c2 | Gt => c3 end. Proof. intros c1 c2 c3 x y; intros. apply rename with (x := x ?= y); intro r; elim r; [ intro; apply H; apply (Zcompare_Eq_eq x y); assumption | unfold Zlt in H0; assumption | unfold Zgt in H1; assumption ]. Qed. Lemma Zcompare_eq_case : forall (c1 c2 c3:Prop) (n m:Z), c1 -> n = m -> match n ?= m with | Eq => c1 | Lt => c2 | Gt => c3 end. Proof. intros c1 c2 c3 x y; intros. rewrite H0; rewrite Zcompare_refl. assumption. Qed. (** Decompose an egality between two [?=] relations into 3 implications *) Lemma Zcompare_egal_dec : forall n m p q:Z, (n < m -> p < q) -> ((n ?= m) = Eq -> (p ?= q) = Eq) -> (n > m -> p > q) -> (n ?= m) = (p ?= q). Proof. intros x1 y1 x2 y2. unfold Zgt in |- *; unfold Zlt in |- *; case (x1 ?= y1); case (x2 ?= y2); auto with arith; symmetry in |- *; auto with arith. Qed. (** Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *) Lemma Zle_compare : forall n m:Z, n <= m -> match n ?= m with | Eq => True | Lt => True | Gt => False end. Proof. intros x y; unfold Zle in |- *; elim (x ?= y); auto with arith. Qed. Lemma Zlt_compare : forall n m:Z, n < m -> match n ?= m with | Eq => False | Lt => True | Gt => False end. Proof. intros x y; unfold Zlt in |- *; elim (x ?= y); intros; discriminate || trivial with arith. Qed. Lemma Zge_compare : forall n m:Z, n >= m -> match n ?= m with | Eq => True | Lt => False | Gt => True end. Proof. intros x y; unfold Zge in |- *; elim (x ?= y); auto with arith. Qed. Lemma Zgt_compare : forall n m:Z, n > m -> match n ?= m with | Eq => False | Lt => False | Gt => True end. Proof. intros x y; unfold Zgt in |- *; elim (x ?= y); intros; discriminate || trivial with arith. Qed. (**********************************************************************) (* Other properties *) Lemma Zmult_compare_compat_l : forall n m p:Z, p > 0 -> (n ?= m) = (p * n ?= p * m). Proof. intros x y z H; destruct z. discriminate H. rewrite Zcompare_mult_compat; reflexivity. discriminate H. Qed. Lemma Zmult_compare_compat_r : forall n m p:Z, p > 0 -> (n ?= m) = (n * p ?= m * p). Proof. intros x y z H; rewrite (Zmult_comm x z); rewrite (Zmult_comm y z); apply Zmult_compare_compat_l; assumption. Qed.