(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> Prop. Notation Power := (Pow A leA). Notation Lex_Exp := (lex_exp A leA). Notation ltl := (Ltl A leA). Notation Descl := (Desc A leA). Notation List := (list A). Notation Nil := (nil (A:=A)). (* useless but symmetric *) Notation Cons := (cons (A:=A)). Notation "<< x , y >>" := (exist Descl x y) (at level 0, x, y at level 100). (* Hint Resolve d_one d_nil t_step. *) Lemma left_prefix : forall x y z:List, ltl (x ++ y) z -> ltl x z. Proof. simple induction x. simple induction z. simpl; intros H. inversion_clear H. simpl; intros; apply (Lt_nil A leA). intros a l HInd. simpl. intros. inversion_clear H. apply (Lt_hd A leA); auto with sets. apply (Lt_tl A leA). apply (HInd y y0); auto with sets. Qed. Lemma right_prefix : forall x y z:List, ltl x (y ++ z) -> ltl x y \/ (exists y' : List, x = y ++ y' /\ ltl y' z). Proof. intros x y; generalize x. elim y; simpl. right. exists x0; auto with sets. intros. inversion H0. left; apply (Lt_nil A leA). left; apply (Lt_hd A leA); auto with sets. generalize (H x1 z H3). simple induction 1. left; apply (Lt_tl A leA); auto with sets. simple induction 1. simple induction 1; intros. rewrite H8. right; exists x2; auto with sets. Qed. Lemma desc_prefix : forall (x:List) (a:A), Descl (x ++ Cons a Nil) -> Descl x. Proof. intros. inversion H. generalize (app_cons_not_nil _ _ _ H1); simple induction 1. cut (x ++ Cons a Nil = Cons x0 Nil); auto with sets. intro. generalize (app_eq_unit _ _ H0). simple induction 1; simple induction 1; intros. rewrite H4; auto using d_nil with sets. discriminate H5. generalize (app_inj_tail _ _ _ _ H0). simple induction 1; intros. rewrite <- H4; auto with sets. Qed. Lemma desc_tail : forall (x:List) (a b:A), Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b. Proof. intro. apply rev_ind with (A := A) (P := fun x:List => forall a b:A, Descl (Cons b (x ++ Cons a Nil)) -> clos_trans A leA a b). intros. inversion H. cut (Cons b (Cons a Nil) = (Nil ++ Cons b Nil) ++ Cons a Nil); auto with sets; intro. generalize H0. intro. generalize (app_inj_tail (l ++ Cons y Nil) (Nil ++ Cons b Nil) _ _ H4); simple induction 1. intros. generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros. generalize H1. rewrite <- H10; rewrite <- H7; intro. apply (t_step A leA); auto with sets. intros. inversion H0. generalize (app_cons_not_nil _ _ _ H3); intro. elim H1. generalize H0. generalize (app_comm_cons (l ++ Cons x0 Nil) (Cons a Nil) b); simple induction 1. intro. generalize (desc_prefix (Cons b (l ++ Cons x0 Nil)) a H5); intro. generalize (H x0 b H6). intro. apply t_trans with (A := A) (y := x0); auto with sets. apply t_step. generalize H1. rewrite H4; intro. generalize (app_inj_tail _ _ _ _ H8); simple induction 1. intros. generalize H2; generalize (app_comm_cons l (Cons x0 Nil) b). intro. generalize H10. rewrite H12; intro. generalize (app_inj_tail _ _ _ _ H13); simple induction 1. intros. rewrite <- H11; rewrite <- H16; auto with sets. Qed. Lemma dist_aux : forall z:List, Descl z -> forall x y:List, z = x ++ y -> Descl x /\ Descl y. Proof. intros z D. elim D. intros. cut (x ++ y = Nil); auto with sets; intro. generalize (app_eq_nil _ _ H0); simple induction 1. intros. rewrite H2; rewrite H3; split; apply d_nil. intros. cut (x0 ++ y = Cons x Nil); auto with sets. intros E. generalize (app_eq_unit _ _ E); simple induction 1. simple induction 1; intros. rewrite H2; rewrite H3; split. apply d_nil. apply d_one. simple induction 1; intros. rewrite H2; rewrite H3; split. apply d_one. apply d_nil. do 5 intro. intros Hind. do 2 intro. generalize x0. apply rev_ind with (A := A) (P := fun y0:List => forall x0:List, (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ y0 -> Descl x0 /\ Descl y0). intro. generalize (app_nil_end x1); simple induction 1; simple induction 1. split. apply d_conc; auto with sets. apply d_nil. do 3 intro. generalize x1. apply rev_ind with (A := A) (P := fun l0:List => forall (x1:A) (x0:List), (l ++ Cons y Nil) ++ Cons x Nil = x0 ++ l0 ++ Cons x1 Nil -> Descl x0 /\ Descl (l0 ++ Cons x1 Nil)). simpl. split. generalize (app_inj_tail _ _ _ _ H2); simple induction 1. simple induction 1; auto with sets. apply d_one. do 5 intro. generalize (app_ass x4 (l1 ++ Cons x2 Nil) (Cons x3 Nil)). simple induction 1. generalize (app_ass x4 l1 (Cons x2 Nil)); simple induction 1. intro E. generalize (app_inj_tail _ _ _ _ E). simple induction 1; intros. generalize (app_inj_tail _ _ _ _ H6); simple induction 1; intros. rewrite <- H7; rewrite <- H10; generalize H6. generalize (app_ass x4 l1 (Cons x2 Nil)); intro E1. rewrite E1. intro. generalize (Hind x4 (l1 ++ Cons x2 Nil) H11). simple induction 1; split. auto with sets. generalize H14. rewrite <- H10; intro. apply d_conc; auto with sets. Qed. Lemma dist_Desc_concat : forall x y:List, Descl (x ++ y) -> Descl x /\ Descl y. Proof. intros. apply (dist_aux (x ++ y) H x y); auto with sets. Qed. Lemma desc_end : forall (a b:A) (x:List), Descl (x ++ Cons a Nil) /\ ltl (x ++ Cons a Nil) (Cons b Nil) -> clos_trans A leA a b. Proof. intros a b x. case x. simpl. simple induction 1. intros. inversion H1; auto with sets. inversion H3. simple induction 1. generalize (app_comm_cons l (Cons a Nil) a0). intros E; rewrite <- E; intros. generalize (desc_tail l a a0 H0); intro. inversion H1. apply t_trans with (y := a0); auto with sets. inversion H4. Qed. Lemma ltl_unit : forall (x:List) (a b:A), Descl (x ++ Cons a Nil) -> ltl (x ++ Cons a Nil) (Cons b Nil) -> ltl x (Cons b Nil). Proof. intro. case x. intros; apply (Lt_nil A leA). simpl; intros. inversion_clear H0. apply (Lt_hd A leA a b); auto with sets. inversion_clear H1. Qed. Lemma acc_app : forall (x1 x2:List) (y1:Descl (x1 ++ x2)), Acc Lex_Exp << x1 ++ x2, y1 >> -> forall (x:List) (y:Descl x), ltl x (x1 ++ x2) -> Acc Lex_Exp << x, y >>. Proof. intros. apply (Acc_inv (R:=Lex_Exp) (x:=<< x1 ++ x2, y1 >>)). auto with sets. unfold lex_exp; simpl; auto with sets. Qed. Theorem wf_lex_exp : well_founded leA -> well_founded Lex_Exp. Proof. unfold well_founded at 2. simple induction a; intros x y. apply Acc_intro. simple induction y0. unfold lex_exp at 1; simpl. apply rev_ind with (A := A) (P := fun x:List => forall (x0:List) (y:Descl x0), ltl x0 x -> Acc Lex_Exp << x0, y >>). intros. inversion_clear H0. intro. generalize (well_founded_ind (wf_clos_trans A leA H)). intros GR. apply GR with (P := fun x0:A => forall l:List, (forall (x1:List) (y:Descl x1), ltl x1 l -> Acc Lex_Exp << x1, y >>) -> forall (x1:List) (y:Descl x1), ltl x1 (l ++ Cons x0 Nil) -> Acc Lex_Exp << x1, y >>). intro; intros HInd; intros. generalize (right_prefix x2 l (Cons x1 Nil) H1). simple induction 1. intro; apply (H0 x2 y1 H3). simple induction 1. intro; simple induction 1. clear H4 H2. intro; generalize y1; clear y1. rewrite H2. apply rev_ind with (A := A) (P := fun x3:List => forall y1:Descl (l ++ x3), ltl x3 (Cons x1 Nil) -> Acc Lex_Exp << l ++ x3, y1 >>). intros. generalize (app_nil_end l); intros Heq. generalize y1. clear y1. rewrite <- Heq. intro. apply Acc_intro. simple induction y2. unfold lex_exp at 1. simpl; intros x4 y3. intros. apply (H0 x4 y3); auto with sets. intros. generalize (dist_Desc_concat l (l0 ++ Cons x4 Nil) y1). simple induction 1. intros. generalize (desc_end x4 x1 l0 (conj H8 H5)); intros. generalize y1. rewrite <- (app_ass l l0 (Cons x4 Nil)); intro. generalize (HInd x4 H9 (l ++ l0)); intros HInd2. generalize (ltl_unit l0 x4 x1 H8 H5); intro. generalize (dist_Desc_concat (l ++ l0) (Cons x4 Nil) y2). simple induction 1; intros. generalize (H4 H12 H10); intro. generalize (Acc_inv H14). generalize (acc_app l l0 H12 H14). intros f g. generalize (HInd2 f); intro. apply Acc_intro. simple induction y3. unfold lex_exp at 1; simpl; intros. apply H15; auto with sets. Qed. End Wf_Lexicographic_Exponentiation.