(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Set := |F1 : forall {n}, t (S n) |FS : forall {n}, t n -> t (S n). Section SCHEMES. Definition case0 P (p: t 0): P p := match p as p' in t n return match n as n' return t n' -> Type with |0 => fun f0 => P f0 |S _ => fun _ => @ID end p' with |F1 _ => @id |FS _ _ => @id end. Definition caseS (P: forall {n}, t (S n) -> Type) (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p)) {n} (p: t (S n)): P p := match p with |F1 k => P1 k |FS k pp => PS pp end. Definition rectS (P: forall {n}, t (S n) -> Type) (P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)): forall {n} (p: t (S n)), P p := fix rectS_fix {n} (p: t (S n)): P p:= match p with |F1 k => P1 k |FS 0 pp => case0 (fun f => P (FS f)) pp |FS (S k) pp => PS pp (rectS_fix pp) end. Definition rect2 (P: forall {n} (a b: t n), Type) (H0: forall n, @P (S n) F1 F1) (H1: forall {n} (f: t n), P F1 (FS f)) (H2: forall {n} (f: t n), P (FS f) F1) (HS: forall {n} (f g : t n), P f g -> P (FS f) (FS g)): forall {n} (a b: t n), P a b := fix rect2_fix {n} (a: t n): forall (b: t n), P a b := match a with |F1 m => fun (b: t (S m)) => match b as b' in t n' return match n',b' with |0,_ => @ID |S n0,b0 => P F1 b0 end with |F1 m' => H0 m' |FS m' b' => H1 b' end |FS m a' => fun (b: t (S m)) => match b with |F1 m' => fun aa: t m' => H2 aa |FS m' b' => fun aa: t m' => HS aa b' (rect2_fix aa b') end a' end. End SCHEMES. Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y := match eq in _ = a return match a as a' in t m return match m with |0 => Prop |S n' => t n' -> Prop end with @F1 _ => fun _ => True |@FS _ y => fun x' => x' = y end x with eq_refl => eq_refl end. (** [to_nat f] = p iff [f] is the p{^ th} element of [fin m]. *) Fixpoint to_nat {m} (n : t m) : {i | i < m} := match n in t k return {i | i< k} with |F1 j => exist (fun i => i< S j) 0 (Lt.lt_0_Sn j) |FS _ p => match to_nat p with |exist i P => exist _ (S i) (Lt.lt_n_S _ _ P) end end. (** [of_nat p n] answers the p{^ th} element of [fin n] if p < n or a proof of p >= n else *) Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } := match n with |0 => inright _ (ex_intro (fun x => p = 0 + x) p (@eq_refl _ p)) |S n' => match p with |0 => inleft _ (F1) |S p' => match of_nat p' n' with |inleft f => inleft _ (FS f) |inright arg => inright _ (match arg with |ex_intro m e => ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end) end end end. (** [of_nat_lt p n H] answers the p{^ th} element of [fin n] it behaves much better than [of_nat p n] on open term *) Fixpoint of_nat_lt {p n : nat} : p < n -> t n := match n with |0 => fun H : p < 0 => False_rect _ (Lt.lt_n_O p H) |S n' => match p with |0 => fun _ => @F1 n' |S p' => fun H => FS (of_nat_lt (Lt.lt_S_n _ _ H)) end end. Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p. Proof. induction p. reflexivity. simpl; destruct (to_nat p). simpl. subst p; repeat f_equal. apply Peano_dec.le_unique. Qed. (** [weak p f] answers a function witch is the identity for the p{^ th} first element of [fin (p + m)] and [FS (FS .. (FS (f k)))] for [FS (FS .. (FS k))] with p FSs *) Fixpoint weak {m}{n} p (f : t m -> t n) : t (p + m) -> t (p + n) := match p as p' return t (p' + m) -> t (p' + n) with |0 => f |S p' => fun x => match x with |F1 n' => fun eq : n' = p' + m => F1 |FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq)) end (eq_refl _) end. (** The p{^ th} element of [fin m] viewed as the p{^ th} element of [fin (m + n)] *) Fixpoint L {m} n (p : t m) : t (m + n) := match p with |F1 _ => F1 |FS _ p' => FS (L n p') end. Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p). Proof. induction p. reflexivity. simpl; destruct (to_nat (L n p)); simpl in *; rewrite IHp. now destruct (to_nat p). Qed. (** The p{^ th} element of [fin m] viewed as the p{^ th} element of [fin (n + m)] Really really ineficient !!! *) Definition L_R {m} n (p : t m) : t (n + m). induction n. exact p. exact ((fix LS k (p: t k) := match p with |F1 k' => @F1 (S k') |FS _ p' => FS (LS _ p') end) _ IHn). Defined. (** The p{^ th} element of [fin m] viewed as the (n + p){^ th} element of [fin (n + m)] *) Fixpoint R {m} n (p : t m) : t (n + m) := match n with |0 => p |S n' => FS (R n' p) end. Lemma R_sanity {m} n (p : t m) : proj1_sig (to_nat (R n p)) = n + proj1_sig (to_nat p). Proof. induction n. reflexivity. simpl; destruct (to_nat (R n p)); simpl in *; rewrite IHn. now destruct (to_nat p). Qed. Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) := match o with |F1 m' => L (m' * n) p |FS m' o' => R n (depair o' p) end. Lemma depair_sanity {m n} (o : t m) (p : t n) : proj1_sig (to_nat (depair o p)) = n * (proj1_sig (to_nat o)) + (proj1_sig (to_nat p)). Proof. induction o ; simpl. rewrite L_sanity. now rewrite Mult.mult_0_r. rewrite R_sanity. rewrite IHo. rewrite Plus.plus_assoc. destruct (to_nat o); simpl; rewrite Mult.mult_succ_r. now rewrite (Plus.plus_comm n). Qed.