(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* t -> Prop. Definition eq_refl := @refl_equal t. Definition eq_sym := @sym_eq t. Definition eq_trans := @trans_eq t. Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Parameter compare : forall x y : t, Compare lt eq x y. Parameter eq_dec : forall x y : t, { eq x y } + { ~ eq x y }. End UsualOrderedType. (** a [UsualOrderedType] is in particular an [OrderedType]. *) Module UOT_to_OT (U:UsualOrderedType) <: OrderedType := U. (** [nat] is an ordered type with respect to the usual order on natural numbers. *) Module Nat_as_OT <: UsualOrderedType. Definition t := nat. Definition eq := @eq nat. Definition eq_refl := @refl_equal t. Definition eq_sym := @sym_eq t. Definition eq_trans := @trans_eq t. Definition lt := lt. Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Proof. unfold lt; intros; apply lt_trans with y; auto. Qed. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. unfold lt, eq; intros; omega. Qed. Definition compare : forall x y : t, Compare lt eq x y. Proof. intros x y; destruct (nat_compare x y) as [ | | ]_eqn. apply EQ. apply nat_compare_eq; assumption. apply LT. apply nat_compare_Lt_lt; assumption. apply GT. apply nat_compare_Gt_gt; assumption. Defined. Definition eq_dec := eq_nat_dec. End Nat_as_OT. (** [Z] is an ordered type with respect to the usual order on integers. *) Open Local Scope Z_scope. Module Z_as_OT <: UsualOrderedType. Definition t := Z. Definition eq := @eq Z. Definition eq_refl := @refl_equal t. Definition eq_sym := @sym_eq t. Definition eq_trans := @trans_eq t. Definition lt (x y:Z) := (x y x ~ x=y. Proof. intros; omega. Qed. Definition compare : forall x y, Compare lt eq x y. Proof. intros x y; destruct (x ?= y) as [ | | ]_eqn. apply EQ; apply Zcompare_Eq_eq; assumption. apply LT; assumption. apply GT; apply Zgt_lt; assumption. Defined. Definition eq_dec := Z_eq_dec. End Z_as_OT. (** [positive] is an ordered type with respect to the usual order on natural numbers. *) Open Local Scope positive_scope. Module Positive_as_OT <: UsualOrderedType. Definition t:=positive. Definition eq:=@eq positive. Definition eq_refl := @refl_equal t. Definition eq_sym := @sym_eq t. Definition eq_trans := @trans_eq t. Definition lt := Plt. Definition lt_trans := Plt_trans. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. intros x y H. contradict H. rewrite H. apply Plt_irrefl. Qed. Definition compare : forall x y : t, Compare lt eq x y. Proof. intros x y. destruct (x ?= y) as [ | | ]_eqn. apply EQ; apply Pcompare_Eq_eq; assumption. apply LT; assumption. apply GT; apply ZC1; assumption. Defined. Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }. Proof. intros; unfold eq; decide equality. Defined. End Positive_as_OT. (** [N] is an ordered type with respect to the usual order on natural numbers. *) Open Local Scope positive_scope. Module N_as_OT <: UsualOrderedType. Definition t:=N. Definition eq:=@eq N. Definition eq_refl := @refl_equal t. Definition eq_sym := @sym_eq t. Definition eq_trans := @trans_eq t. Definition lt:=Nlt. Definition lt_trans := Nlt_trans. Definition lt_not_eq := Nlt_not_eq. Definition compare : forall x y : t, Compare lt eq x y. Proof. intros x y. destruct (x ?= y)%N as [ | | ]_eqn. apply EQ; apply Ncompare_Eq_eq; assumption. apply LT; assumption. apply GT. apply Ngt_Nlt; assumption. Defined. Definition eq_dec : forall x y, { eq x y } + { ~ eq x y }. Proof. intros. unfold eq. decide equality. apply Positive_as_OT.eq_dec. Defined. End N_as_OT. (** From two ordered types, we can build a new OrderedType over their cartesian product, using the lexicographic order. *) Module PairOrderedType(O1 O2:OrderedType) <: OrderedType. Module MO1:=OrderedTypeFacts(O1). Module MO2:=OrderedTypeFacts(O2). Definition t := prod O1.t O2.t. Definition eq x y := O1.eq (fst x) (fst y) /\ O2.eq (snd x) (snd y). Definition lt x y := O1.lt (fst x) (fst y) \/ (O1.eq (fst x) (fst y) /\ O2.lt (snd x) (snd y)). Lemma eq_refl : forall x : t, eq x x. Proof. intros (x1,x2); red; simpl; auto. Qed. Lemma eq_sym : forall x y : t, eq x y -> eq y x. Proof. intros (x1,x2) (y1,y2); unfold eq; simpl; intuition. Qed. Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z. Proof. intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto. Qed. Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Proof. intros (x1,x2) (y1,y2) (z1,z2); unfold eq, lt; simpl; intuition. left; eauto. left; eapply MO1.lt_eq; eauto. left; eapply MO1.eq_lt; eauto. right; split; eauto. Qed. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. intros (x1,x2) (y1,y2); unfold eq, lt; simpl; intuition. apply (O1.lt_not_eq H0 H1). apply (O2.lt_not_eq H3 H2). Qed. Definition compare : forall x y : t, Compare lt eq x y. intros (x1,x2) (y1,y2). destruct (O1.compare x1 y1). apply LT; unfold lt; auto. destruct (O2.compare x2 y2). apply LT; unfold lt; auto. apply EQ; unfold eq; auto. apply GT; unfold lt; auto. apply GT; unfold lt; auto. Defined. Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}. Proof. intros; elim (compare x y); intro H; [ right | left | right ]; auto. auto using lt_not_eq. assert (~ eq y x); auto using lt_not_eq, eq_sym. Defined. End PairOrderedType. (** Even if [positive] can be seen as an ordered type with respect to the usual order (see above), we can also use a lexicographic order over bits (lower bits are considered first). This is more natural when using [positive] as indexes for sets or maps (see FSetPositive and FMapPositive. *) Module PositiveOrderedTypeBits <: UsualOrderedType. Definition t:=positive. Definition eq:=@eq positive. Definition eq_refl := @refl_equal t. Definition eq_sym := @sym_eq t. Definition eq_trans := @trans_eq t. Fixpoint bits_lt (p q:positive) : Prop := match p, q with | xH, xI _ => True | xH, _ => False | xO p, xO q => bits_lt p q | xO _, _ => True | xI p, xI q => bits_lt p q | xI _, _ => False end. Definition lt:=bits_lt. Lemma bits_lt_trans : forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z. Proof. induction x. induction y; destruct z; simpl; eauto; intuition. induction y; destruct z; simpl; eauto; intuition. induction y; destruct z; simpl; eauto; intuition. Qed. Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Proof. exact bits_lt_trans. Qed. Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x. Proof. induction x; simpl; auto. Qed. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. intros; intro. rewrite <- H0 in H; clear H0 y. unfold lt in H. exact (bits_lt_antirefl x H). Qed. Definition compare : forall x y : t, Compare lt eq x y. Proof. induction x; destruct y. (* I I *) destruct (IHx y). apply LT; auto. apply EQ; rewrite e; red; auto. apply GT; auto. (* I O *) apply GT; simpl; auto. (* I H *) apply GT; simpl; auto. (* O I *) apply LT; simpl; auto. (* O O *) destruct (IHx y). apply LT; auto. apply EQ; rewrite e; red; auto. apply GT; auto. (* O H *) apply LT; simpl; auto. (* H I *) apply LT; simpl; auto. (* H O *) apply GT; simpl; auto. (* H H *) apply EQ; red; auto. Qed. Lemma eq_dec (x y: positive): {x = y} + {x <> y}. Proof. intros. case_eq (x ?= y); intros. left. apply Pcompare_Eq_eq; auto. right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate. right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate. Qed. End PositiveOrderedTypeBits.