(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* t -> t. Parameter max_l : forall x y, y<=x -> max x y == x. Parameter max_r : forall x y, x<=y -> max x y == y. End HasMax. Module Type HasMin (Import E:EqLe'). Parameter Inline min : t -> t -> t. Parameter min_l : forall x y, x<=y -> min x y == x. Parameter min_r : forall x y, y<=x -> min x y == y. End HasMin. Module Type HasMinMax (E:EqLe) := HasMax E <+ HasMin E. (** ** Any [OrderedTypeFull] can be equipped by [max] and [min] based on the compare function. *) Definition gmax {A} (cmp : A->A->comparison) x y := match cmp x y with Lt => y | _ => x end. Definition gmin {A} (cmp : A->A->comparison) x y := match cmp x y with Gt => y | _ => x end. Module GenericMinMax (Import O:OrderedTypeFull') <: HasMinMax O. Definition max := gmax O.compare. Definition min := gmin O.compare. Lemma ge_not_lt : forall x y, y<=x -> x False. Proof. intros x y H H'. apply (StrictOrder_Irreflexive x). rewrite le_lteq in *; destruct H as [H|H]. transitivity y; auto. rewrite H in H'; auto. Qed. Lemma max_l : forall x y, y<=x -> max x y == x. Proof. intros. unfold max, gmax. case compare_spec; auto with relations. intros; elim (ge_not_lt x y); auto. Qed. Lemma max_r : forall x y, x<=y -> max x y == y. Proof. intros. unfold max, gmax. case compare_spec; auto with relations. intros; elim (ge_not_lt y x); auto. Qed. Lemma min_l : forall x y, x<=y -> min x y == x. Proof. intros. unfold min, gmin. case compare_spec; auto with relations. intros; elim (ge_not_lt y x); auto. Qed. Lemma min_r : forall x y, y<=x -> min x y == y. Proof. intros. unfold min, gmin. case compare_spec; auto with relations. intros; elim (ge_not_lt x y); auto. Qed. End GenericMinMax. (** ** Consequences of the minimalist interface: facts about [max]. *) Module MaxLogicalProperties (Import O:TotalOrder')(Import M:HasMax O). Module Import Private_Tac := !MakeOrderTac O. (** An alternative caracterisation of [max], equivalent to [max_l /\ max_r] *) Lemma max_spec : forall n m, (n < m /\ max n m == m) \/ (m <= n /\ max n m == n). Proof. intros n m. destruct (lt_total n m); [left|right]. split; auto. apply max_r. rewrite le_lteq; auto. assert (m <= n) by (rewrite le_lteq; intuition). split; auto. apply max_l; auto. Qed. (** A more symmetric version of [max_spec], based only on [le]. Beware that left and right alternatives overlap. *) Lemma max_spec_le : forall n m, (n <= m /\ max n m == m) \/ (m <= n /\ max n m == n). Proof. intros. destruct (max_spec n m); [left|right]; intuition; order. Qed. Instance : Proper (eq==>eq==>iff) le. Proof. repeat red. intuition order. Qed. Instance max_compat : Proper (eq==>eq==>eq) max. Proof. intros x x' Hx y y' Hy. assert (H1 := max_spec x y). assert (H2 := max_spec x' y'). set (m := max x y) in *; set (m' := max x' y') in *; clearbody m m'. rewrite <- Hx, <- Hy in *. destruct (lt_total x y); intuition order. Qed. (** A function satisfying the same specification is equal to [max]. *) Lemma max_unicity : forall n m p, ((n < m /\ p == m) \/ (m <= n /\ p == n)) -> p == max n m. Proof. intros. assert (Hm := max_spec n m). destruct (lt_total n m); intuition; order. Qed. Lemma max_unicity_ext : forall f, (forall n m, (n < m /\ f n m == m) \/ (m <= n /\ f n m == n)) -> (forall n m, f n m == max n m). Proof. intros. apply max_unicity; auto. Qed. (** [max] commutes with monotone functions. *) Lemma max_mono: forall f, (Proper (eq ==> eq) f) -> (Proper (le ==> le) f) -> forall x y, max (f x) (f y) == f (max x y). Proof. intros f Eqf Lef x y. destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E; destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto. assert (f x <= f y) by (apply Lef; order). order. assert (f y <= f x) by (apply Lef; order). order. Qed. (** *** Semi-lattice algebraic properties of [max] *) Lemma max_id : forall n, max n n == n. Proof. intros. destruct (max_spec n n); intuition. Qed. Notation max_idempotent := max_id (only parsing). Lemma max_assoc : forall m n p, max m (max n p) == max (max m n) p. Proof. intros. destruct (max_spec n p) as [(H,Eq)|(H,Eq)]; rewrite Eq. destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'. destruct (max_spec m p); intuition; order. order. destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'. order. destruct (max_spec m p); intuition; order. Qed. Lemma max_comm : forall n m, max n m == max m n. Proof. intros. destruct (max_spec n m) as [(H,Eq)|(H,Eq)]; rewrite Eq. destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order. destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order. Qed. (** *** Least-upper bound properties of [max] *) Lemma le_max_l : forall n m, n <= max n m. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma le_max_r : forall n m, m <= max n m. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_l_iff : forall n m, max n m == n <-> m <= n. Proof. split. intro H; rewrite <- H. apply le_max_r. apply max_l. Qed. Lemma max_r_iff : forall n m, max n m == m <-> n <= m. Proof. split. intro H; rewrite <- H. apply le_max_l. apply max_r. Qed. Lemma max_le : forall n m p, p <= max n m -> p <= n \/ p <= m. Proof. intros n m p H; destruct (max_spec n m); [right|left]; intuition; order. Qed. Lemma max_le_iff : forall n m p, p <= max n m <-> p <= n \/ p <= m. Proof. intros. split. apply max_le. destruct (max_spec n m); intuition; order. Qed. Lemma max_lt_iff : forall n m p, p < max n m <-> p < n \/ p < m. Proof. intros. destruct (max_spec n m); intuition; order || (right; order) || (left; order). Qed. Lemma max_lub_l : forall n m p, max n m <= p -> n <= p. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_lub_r : forall n m p, max n m <= p -> m <= p. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_lub : forall n m p, n <= p -> m <= p -> max n m <= p. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_lub_iff : forall n m p, max n m <= p <-> n <= p /\ m <= p. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_lub_lt : forall n m p, n < p -> m < p -> max n m < p. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_lub_lt_iff : forall n m p, max n m < p <-> n < p /\ m < p. Proof. intros; destruct (max_spec n m); intuition; order. Qed. Lemma max_le_compat_l : forall n m p, n <= m -> max p n <= max p m. Proof. intros. destruct (max_spec p n) as [(LT,E)|(LE,E)]; rewrite E. assert (LE' := le_max_r p m). order. apply le_max_l. Qed. Lemma max_le_compat_r : forall n m p, n <= m -> max n p <= max m p. Proof. intros. rewrite (max_comm n p), (max_comm m p). auto using max_le_compat_l. Qed. Lemma max_le_compat : forall n m p q, n <= m -> p <= q -> max n p <= max m q. Proof. intros n m p q Hnm Hpq. assert (LE := max_le_compat_l _ _ m Hpq). assert (LE' := max_le_compat_r _ _ p Hnm). order. Qed. End MaxLogicalProperties. (** ** Properties concernant [min], then both [min] and [max]. To avoid too much code duplication, we exploit that [min] can be seen as a [max] of the reversed order. *) Module MinMaxLogicalProperties (Import O:TotalOrder')(Import M:HasMinMax O). Include MaxLogicalProperties O M. Import Private_Tac. Module Import Private_Rev. Module ORev := TotalOrderRev O. Module MRev <: HasMax ORev. Definition max x y := M.min y x. Definition max_l x y := M.min_r y x. Definition max_r x y := M.min_l y x. End MRev. Module MPRev := MaxLogicalProperties ORev MRev. End Private_Rev. Instance min_compat : Proper (eq==>eq==>eq) min. Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed. Lemma min_spec : forall n m, (n < m /\ min n m == n) \/ (m <= n /\ min n m == m). Proof. intros. exact (MPRev.max_spec m n). Qed. Lemma min_spec_le : forall n m, (n <= m /\ min n m == n) \/ (m <= n /\ min n m == m). Proof. intros. exact (MPRev.max_spec_le m n). Qed. Lemma min_mono: forall f, (Proper (eq ==> eq) f) -> (Proper (le ==> le) f) -> forall x y, min (f x) (f y) == f (min x y). Proof. intros. apply MPRev.max_mono; auto. compute in *; eauto. Qed. Lemma min_unicity : forall n m p, ((n < m /\ p == n) \/ (m <= n /\ p == m)) -> p == min n m. Proof. intros n m p. apply MPRev.max_unicity. Qed. Lemma min_unicity_ext : forall f, (forall n m, (n < m /\ f n m == n) \/ (m <= n /\ f n m == m)) -> (forall n m, f n m == min n m). Proof. intros f H n m. apply MPRev.max_unicity, H; auto. Qed. Lemma min_id : forall n, min n n == n. Proof. intros. exact (MPRev.max_id n). Qed. Notation min_idempotent := min_id (only parsing). Lemma min_assoc : forall m n p, min m (min n p) == min (min m n) p. Proof. intros. symmetry; apply MPRev.max_assoc. Qed. Lemma min_comm : forall n m, min n m == min m n. Proof. intros. exact (MPRev.max_comm m n). Qed. Lemma le_min_r : forall n m, min n m <= m. Proof. intros. exact (MPRev.le_max_l m n). Qed. Lemma le_min_l : forall n m, min n m <= n. Proof. intros. exact (MPRev.le_max_r m n). Qed. Lemma min_l_iff : forall n m, min n m == n <-> n <= m. Proof. intros n m. exact (MPRev.max_r_iff m n). Qed. Lemma min_r_iff : forall n m, min n m == m <-> m <= n. Proof. intros n m. exact (MPRev.max_l_iff m n). Qed. Lemma min_le : forall n m p, min n m <= p -> n <= p \/ m <= p. Proof. intros n m p H. destruct (MPRev.max_le _ _ _ H); auto. Qed. Lemma min_le_iff : forall n m p, min n m <= p <-> n <= p \/ m <= p. Proof. intros n m p. rewrite (MPRev.max_le_iff m n p); intuition. Qed. Lemma min_lt_iff : forall n m p, min n m < p <-> n < p \/ m < p. Proof. intros n m p. rewrite (MPRev.max_lt_iff m n p); intuition. Qed. Lemma min_glb_l : forall n m p, p <= min n m -> p <= n. Proof. intros n m. exact (MPRev.max_lub_r m n). Qed. Lemma min_glb_r : forall n m p, p <= min n m -> p <= m. Proof. intros n m. exact (MPRev.max_lub_l m n). Qed. Lemma min_glb : forall n m p, p <= n -> p <= m -> p <= min n m. Proof. intros. apply MPRev.max_lub; auto. Qed. Lemma min_glb_iff : forall n m p, p <= min n m <-> p <= n /\ p <= m. Proof. intros. rewrite (MPRev.max_lub_iff m n p); intuition. Qed. Lemma min_glb_lt : forall n m p, p < n -> p < m -> p < min n m. Proof. intros. apply MPRev.max_lub_lt; auto. Qed. Lemma min_glb_lt_iff : forall n m p, p < min n m <-> p < n /\ p < m. Proof. intros. rewrite (MPRev.max_lub_lt_iff m n p); intuition. Qed. Lemma min_le_compat_l : forall n m p, n <= m -> min p n <= min p m. Proof. intros n m. exact (MPRev.max_le_compat_r m n). Qed. Lemma min_le_compat_r : forall n m p, n <= m -> min n p <= min m p. Proof. intros n m. exact (MPRev.max_le_compat_l m n). Qed. Lemma min_le_compat : forall n m p q, n <= m -> p <= q -> min n p <= min m q. Proof. intros. apply MPRev.max_le_compat; auto. Qed. (** *** Combined properties of min and max *) Lemma min_max_absorption : forall n m, max n (min n m) == n. Proof. intros. destruct (min_spec n m) as [(C,E)|(C,E)]; rewrite E. apply max_l. order. destruct (max_spec n m); intuition; order. Qed. Lemma max_min_absorption : forall n m, min n (max n m) == n. Proof. intros. destruct (max_spec n m) as [(C,E)|(C,E)]; rewrite E. destruct (min_spec n m) as [(C',E')|(C',E')]; auto. order. apply min_l; auto. order. Qed. (** Distributivity *) Lemma max_min_distr : forall n m p, max n (min m p) == min (max n m) (max n p). Proof. intros. symmetry. apply min_mono. eauto with *. repeat red; intros. apply max_le_compat_l; auto. Qed. Lemma min_max_distr : forall n m p, min n (max m p) == max (min n m) (min n p). Proof. intros. symmetry. apply max_mono. eauto with *. repeat red; intros. apply min_le_compat_l; auto. Qed. (** Modularity *) Lemma max_min_modular : forall n m p, max n (min m (max n p)) == min (max n m) (max n p). Proof. intros. rewrite <- max_min_distr. destruct (max_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *. destruct (min_spec m n) as [(C',E')|(C',E')]; rewrite E'. rewrite 2 max_l; try order. rewrite min_le_iff; auto. rewrite 2 max_l; try order. rewrite min_le_iff; auto. Qed. Lemma min_max_modular : forall n m p, min n (max m (min n p)) == max (min n m) (min n p). Proof. intros. rewrite <- min_max_distr. destruct (min_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *. destruct (max_spec m n) as [(C',E')|(C',E')]; rewrite E'. rewrite 2 min_l; try order. rewrite max_le_iff; right; order. rewrite 2 min_l; try order. rewrite max_le_iff; auto. Qed. (** Disassociativity *) Lemma max_min_disassoc : forall n m p, min n (max m p) <= max (min n m) p. Proof. intros. rewrite min_max_distr. auto using max_le_compat_l, le_min_r. Qed. (** Anti-monotonicity swaps the role of [min] and [max] *) Lemma max_min_antimono : forall f, Proper (eq==>eq) f -> Proper (le==>inverse le) f -> forall x y, max (f x) (f y) == f (min x y). Proof. intros f Eqf Lef x y. destruct (min_spec x y) as [(H,E)|(H,E)]; rewrite E; destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto. assert (f y <= f x) by (apply Lef; order). order. assert (f x <= f y) by (apply Lef; order). order. Qed. Lemma min_max_antimono : forall f, Proper (eq==>eq) f -> Proper (le==>inverse le) f -> forall x y, min (f x) (f y) == f (max x y). Proof. intros f Eqf Lef x y. destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E; destruct (min_spec (f x) (f y)) as [(H',E')|(H',E')]; auto. assert (f y <= f x) by (apply Lef; order). order. assert (f x <= f y) by (apply Lef; order). order. Qed. End MinMaxLogicalProperties. (** ** Properties requiring a decidable order *) Module MinMaxDecProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O). (** Induction principles for [max]. *) Lemma max_case_strong : forall n m (P:t -> Type), (forall x y, x==y -> P x -> P y) -> (m<=n -> P n) -> (n<=m -> P m) -> P (max n m). Proof. intros n m P Compat Hl Hr. destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT]. assert (n<=m) by (rewrite le_lteq; auto). apply (Compat m), Hr; auto. symmetry; apply max_r; auto. assert (n<=m) by (rewrite le_lteq; auto). apply (Compat m), Hr; auto. symmetry; apply max_r; auto. assert (m<=n) by (rewrite le_lteq; auto). apply (Compat n), Hl; auto. symmetry; apply max_l; auto. Defined. Lemma max_case : forall n m (P:t -> Type), (forall x y, x == y -> P x -> P y) -> P n -> P m -> P (max n m). Proof. intros. apply max_case_strong; auto. Defined. (** [max] returns one of its arguments. *) Lemma max_dec : forall n m, {max n m == n} + {max n m == m}. Proof. intros n m. apply max_case; auto with relations. intros x y H [E|E]; [left|right]; rewrite <-H; auto. Defined. (** Idem for [min] *) Lemma min_case_strong : forall n m (P:O.t -> Type), (forall x y, x == y -> P x -> P y) -> (n<=m -> P n) -> (m<=n -> P m) -> P (min n m). Proof. intros n m P Compat Hl Hr. destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT]. assert (n<=m) by (rewrite le_lteq; auto). apply (Compat n), Hl; auto. symmetry; apply min_l; auto. assert (n<=m) by (rewrite le_lteq; auto). apply (Compat n), Hl; auto. symmetry; apply min_l; auto. assert (m<=n) by (rewrite le_lteq; auto). apply (Compat m), Hr; auto. symmetry; apply min_r; auto. Defined. Lemma min_case : forall n m (P:O.t -> Type), (forall x y, x == y -> P x -> P y) -> P n -> P m -> P (min n m). Proof. intros. apply min_case_strong; auto. Defined. Lemma min_dec : forall n m, {min n m == n} + {min n m == m}. Proof. intros. apply min_case; auto with relations. intros x y H [E|E]; [left|right]; rewrite <- E; auto with relations. Defined. End MinMaxDecProperties. Module MinMaxProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O). Module OT := OTF_to_TotalOrder O. Include MinMaxLogicalProperties OT M. Include MinMaxDecProperties O M. Definition max_l := max_l. Definition max_r := max_r. Definition min_l := min_l. Definition min_r := min_r. Notation max_monotone := max_mono. Notation min_monotone := min_mono. Notation max_min_antimonotone := max_min_antimono. Notation min_max_antimonotone := min_max_antimono. End MinMaxProperties. (** ** When the equality is Leibniz, we can skip a few [Proper] precondition. *) Module UsualMinMaxLogicalProperties (Import O:UsualTotalOrder')(Import M:HasMinMax O). Include MinMaxLogicalProperties O M. Lemma max_monotone : forall f, Proper (le ==> le) f -> forall x y, max (f x) (f y) = f (max x y). Proof. intros; apply max_mono; auto. congruence. Qed. Lemma min_monotone : forall f, Proper (le ==> le) f -> forall x y, min (f x) (f y) = f (min x y). Proof. intros; apply min_mono; auto. congruence. Qed. Lemma min_max_antimonotone : forall f, Proper (le ==> inverse le) f -> forall x y, min (f x) (f y) = f (max x y). Proof. intros; apply min_max_antimono; auto. congruence. Qed. Lemma max_min_antimonotone : forall f, Proper (le ==> inverse le) f -> forall x y, max (f x) (f y) = f (min x y). Proof. intros; apply max_min_antimono; auto. congruence. Qed. End UsualMinMaxLogicalProperties. Module UsualMinMaxDecProperties (Import O:UsualOrderedTypeFull')(Import M:HasMinMax O). Module Import Private_Dec := MinMaxDecProperties O M. Lemma max_case_strong : forall n m (P:t -> Type), (m<=n -> P n) -> (n<=m -> P m) -> P (max n m). Proof. intros; apply max_case_strong; auto. congruence. Defined. Lemma max_case : forall n m (P:t -> Type), P n -> P m -> P (max n m). Proof. intros; apply max_case_strong; auto. Defined. Lemma max_dec : forall n m, {max n m = n} + {max n m = m}. Proof. exact max_dec. Defined. Lemma min_case_strong : forall n m (P:O.t -> Type), (n<=m -> P n) -> (m<=n -> P m) -> P (min n m). Proof. intros; apply min_case_strong; auto. congruence. Defined. Lemma min_case : forall n m (P:O.t -> Type), P n -> P m -> P (min n m). Proof. intros. apply min_case_strong; auto. Defined. Lemma min_dec : forall n m, {min n m = n} + {min n m = m}. Proof. exact min_dec. Defined. End UsualMinMaxDecProperties. Module UsualMinMaxProperties (Import O:UsualOrderedTypeFull')(Import M:HasMinMax O). Module OT := OTF_to_TotalOrder O. Include UsualMinMaxLogicalProperties OT M. Include UsualMinMaxDecProperties O M. Definition max_l := max_l. Definition max_r := max_r. Definition min_l := min_l. Definition min_r := min_r. End UsualMinMaxProperties. (** From [TotalOrder] and [HasMax] and [HasEqDec], we can prove that the order is decidable and build an [OrderedTypeFull]. *) Module TOMaxEqDec_to_Compare (Import O:TotalOrder')(Import M:HasMax O)(Import E:HasEqDec O) <: HasCompare O. Definition compare x y := if eq_dec x y then Eq else if eq_dec (M.max x y) y then Lt else Gt. Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. intros; unfold compare; repeat destruct eq_dec; auto; constructor. destruct (lt_total x y); auto. absurd (x==y); auto. transitivity (max x y); auto. symmetry. apply max_l. rewrite le_lteq; intuition. destruct (lt_total y x); auto. absurd (max x y == y); auto. apply max_r; rewrite le_lteq; intuition. Qed. End TOMaxEqDec_to_Compare. Module TOMaxEqDec_to_OTF (O:TotalOrder)(M:HasMax O)(E:HasEqDec O) <: OrderedTypeFull := O <+ E <+ TOMaxEqDec_to_Compare O M E. (** TODO: Some Remaining questions... --> Compare with a type-classes version ? --> Is max_unicity and max_unicity_ext really convenient to express that any possible definition of max will in fact be equivalent ? --> Is it possible to avoid copy-paste about min even more ? *)