(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (*i $Id: Permut.v 13323 2010-07-24 15:57:30Z herbelin $ i*) (* G. Huet 1-9-95 *) (** We consider a Set [U], given with a commutative-associative operator [op], and a congruence [cong]; we show permutation lemmas *) Section Axiomatisation. Variable U : Type. Variable op : U -> U -> U. Variable cong : U -> U -> Prop. Hypothesis op_comm : forall x y:U, cong (op x y) (op y x). Hypothesis op_ass : forall x y z:U, cong (op (op x y) z) (op x (op y z)). Hypothesis cong_left : forall x y z:U, cong x y -> cong (op x z) (op y z). Hypothesis cong_right : forall x y z:U, cong x y -> cong (op z x) (op z y). Hypothesis cong_trans : forall x y z:U, cong x y -> cong y z -> cong x z. Hypothesis cong_sym : forall x y:U, cong x y -> cong y x. (** Remark. we do not need: [Hypothesis cong_refl : (x:U)(cong x x)]. *) Lemma cong_congr : forall x y z t:U, cong x y -> cong z t -> cong (op x z) (op y t). Proof. intros; apply cong_trans with (op y z). apply cong_left; trivial. apply cong_right; trivial. Qed. Lemma comm_right : forall x y z:U, cong (op x (op y z)) (op x (op z y)). Proof. intros; apply cong_right; apply op_comm. Qed. Lemma comm_left : forall x y z:U, cong (op (op x y) z) (op (op y x) z). Proof. intros; apply cong_left; apply op_comm. Qed. Lemma perm_right : forall x y z:U, cong (op (op x y) z) (op (op x z) y). Proof. intros. apply cong_trans with (op x (op y z)). apply op_ass. apply cong_trans with (op x (op z y)). apply cong_right; apply op_comm. apply cong_sym; apply op_ass. Qed. Lemma perm_left : forall x y z:U, cong (op x (op y z)) (op y (op x z)). Proof. intros. apply cong_trans with (op (op x y) z). apply cong_sym; apply op_ass. apply cong_trans with (op (op y x) z). apply cong_left; apply op_comm. apply op_ass. Qed. Lemma op_rotate : forall x y z t:U, cong (op x (op y z)) (op z (op x y)). Proof. intros; apply cong_trans with (op (op x y) z). apply cong_sym; apply op_ass. apply op_comm. Qed. (** Needed for treesort ... *) Lemma twist : forall x y z t:U, cong (op x (op (op y z) t)) (op (op y (op x t)) z). Proof. intros. apply cong_trans with (op x (op (op y t) z)). apply cong_right; apply perm_right. apply cong_trans with (op (op x (op y t)) z). apply cong_sym; apply op_ass. apply cong_left; apply perm_left. Qed. End Axiomatisation.