(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> Prop. (** Definition of the reflexive-transitive closure [R*] of [R] *) (** Smallest reflexive [P] containing [R o P] *) Definition Rstar (x y:A) := forall P:A -> A -> Prop, (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y. Theorem Rstar_reflexive : forall x:A, Rstar x x. Proof fun (x:A) (P:A -> A -> Prop) (h1:forall u:A, P u u) (h2:forall u v w:A, R u v -> P v w -> P u w) => h1 x. Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z. Proof fun (x y z:A) (t1:R x y) (t2:Rstar y z) (P:A -> A -> Prop) (h1:forall u:A, P u u) (h2:forall u v w:A, R u v -> P v w -> P u w) => h2 x y z t1 (t2 P h1 h2). (** We conclude with transitivity of [Rstar] : *) Theorem Rstar_transitive : forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z. Proof fun (x y z:A) (h:Rstar x y) => h (fun u v:A => Rstar v z -> Rstar u z) (fun (u:A) (t:Rstar u z) => t) (fun (u v w:A) (t1:R u v) (t2:Rstar w z -> Rstar v z) (t3:Rstar w z) => Rstar_R u v z t1 (t2 t3)). (** Another characterization of [R*] *) (** Smallest reflexive [P] containing [R o R*] *) Definition Rstar' (x y:A) := forall P:A -> A -> Prop, P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y. Theorem Rstar'_reflexive : forall x:A, Rstar' x x. Proof fun (x:A) (P:A -> A -> Prop) (h:P x x) (h':forall u:A, R x u -> Rstar u x -> P x x) => h. Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y. Proof fun (x y z:A) (t1:R x z) (t2:Rstar z y) (P:A -> A -> Prop) (h1:P x x) (h2:forall u:A, R x u -> Rstar u y -> P x y) => h2 z t1 t2. (** Equivalence of the two definitions: *) Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y. Proof fun (x y:A) (h:Rstar' x y) => h Rstar (Rstar_reflexive x) (fun u:A => Rstar_R x u y). Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y. Proof fun (x y:A) (h:Rstar x y) => h Rstar' (fun u:A => Rstar'_reflexive u) (fun (u v w:A) (h1:R u v) (h2:Rstar' v w) => Rstar'_R u w v h1 (Rstar'_Rstar v w h2)). (** Property of Commutativity of two relations *) Definition commut (A:Set) (R1 R2:A -> A -> Prop) := forall x y:A, R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'. End Rstar.