(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> Prop. Let Rstar := Rstar A R. Let Rstar_reflexive := Rstar_reflexive A R. Let Rstar_transitive := Rstar_transitive A R. Let Rstar_Rstar' := Rstar_Rstar' A R. Definition coherence (x y:A) := ex2 (Rstar x) (Rstar y). Theorem coherence_intro : forall x y z:A, Rstar x z -> Rstar y z -> coherence x y. Proof fun (x y z:A) (h1:Rstar x z) (h2:Rstar y z) => ex_intro2 (Rstar x) (Rstar y) z h1 h2. (** A very simple case of coherence : *) Lemma Rstar_coherence : forall x y:A, Rstar x y -> coherence x y. Proof fun (x y:A) (h:Rstar x y) => coherence_intro x y y h (Rstar_reflexive y). (** coherence is symmetric *) Lemma coherence_sym : forall x y:A, coherence x y -> coherence y x. Proof fun (x y:A) (h:coherence x y) => ex2_ind (fun (w:A) (h1:Rstar x w) (h2:Rstar y w) => coherence_intro y x w h2 h1) h. Definition confluence (x:A) := forall y z:A, Rstar x y -> Rstar x z -> coherence y z. Definition local_confluence (x:A) := forall y z:A, R x y -> R x z -> coherence y z. Definition noetherian := forall (x:A) (P:A -> Prop), (forall y:A, (forall z:A, R y z -> P z) -> P y) -> P x. Section Newman_section. (** The general hypotheses of the theorem *) Hypothesis Hyp1 : noetherian. Hypothesis Hyp2 : forall x:A, local_confluence x. (** The induction hypothesis *) Section Induct. Variable x : A. Hypothesis hyp_ind : forall u:A, R x u -> confluence u. (** Confluence in [x] *) Variables y z : A. Hypothesis h1 : Rstar x y. Hypothesis h2 : Rstar x z. (** particular case [x->u] and [u->*y] *) Section Newman_. Variable u : A. Hypothesis t1 : R x u. Hypothesis t2 : Rstar u y. (** In the usual diagram, we assume also [x->v] and [v->*z] *) Theorem Diagram : forall (v:A) (u1:R x v) (u2:Rstar v z), coherence y z. Proof (* We draw the diagram ! *) fun (v:A) (u1:R x v) (u2:Rstar v z) => ex2_ind (* local confluence in x for u,v *) (* gives w, u->*w and v->*w *) (fun (w:A) (s1:Rstar u w) (s2:Rstar v w) => ex2_ind (* confluence in u => coherence(y,w) *) (* gives a, y->*a and z->*a *) (fun (a:A) (v1:Rstar y a) (v2:Rstar w a) => ex2_ind (* confluence in v => coherence(a,z) *) (* gives b, a->*b and z->*b *) (fun (b:A) (w1:Rstar a b) (w2:Rstar z b) => coherence_intro y z b (Rstar_transitive y a b v1 w1) w2) (hyp_ind v u1 a z (Rstar_transitive v w a s2 v2) u2)) (hyp_ind u t1 y w t2 s1)) (Hyp2 x u v t1 u1). Theorem caseRxy : coherence y z. Proof Rstar_Rstar' x z h2 (fun v w:A => coherence y w) (coherence_sym x y (Rstar_coherence x y h1)) (*i case x=z i*) Diagram. (*i case x->v->*z i*) End Newman_. Theorem Ind_proof : coherence y z. Proof Rstar_Rstar' x y h1 (fun u v:A => coherence v z) (Rstar_coherence x z h2) (*i case x=y i*) caseRxy. (*i case x->u->*z i*) End Induct. Theorem Newman : forall x:A, confluence x. Proof fun x:A => Hyp1 x confluence Ind_proof. End Newman_section. End Newman.