(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop) : Prop := forall x:R, D1 x -> D2 x. Definition disc (x:R) (delta:posreal) (y:R) : Prop := Rabs (y - x) < delta. Definition neighbourhood (V:R -> Prop) (x:R) : Prop := exists delta : posreal, included (disc x delta) V. Definition open_set (D:R -> Prop) : Prop := forall x:R, D x -> neighbourhood D x. Definition complementary (D:R -> Prop) (c:R) : Prop := ~ D c. Definition closed_set (D:R -> Prop) : Prop := open_set (complementary D). Definition intersection_domain (D1 D2:R -> Prop) (c:R) : Prop := D1 c /\ D2 c. Definition union_domain (D1 D2:R -> Prop) (c:R) : Prop := D1 c \/ D2 c. Definition interior (D:R -> Prop) (x:R) : Prop := neighbourhood D x. Lemma interior_P1 : forall D:R -> Prop, included (interior D) D. Proof. intros; unfold included; unfold interior; intros; unfold neighbourhood in H; elim H; intros; unfold included in H0; apply H0; unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0). Qed. Lemma interior_P2 : forall D:R -> Prop, open_set D -> included D (interior D). Proof. intros; unfold open_set in H; unfold included; intros; assert (H1 := H _ H0); unfold interior; apply H1. Qed. Definition point_adherent (D:R -> Prop) (x:R) : Prop := forall V:R -> Prop, neighbourhood V x -> exists y : R, intersection_domain V D y. Definition adherence (D:R -> Prop) (x:R) : Prop := point_adherent D x. Lemma adherence_P1 : forall D:R -> Prop, included D (adherence D). Proof. intro; unfold included; intros; unfold adherence; unfold point_adherent; intros; exists x; unfold intersection_domain; split. unfold neighbourhood in H0; elim H0; intros; unfold included in H1; apply H1; unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos x0). apply H. Qed. Lemma included_trans : forall D1 D2 D3:R -> Prop, included D1 D2 -> included D2 D3 -> included D1 D3. Proof. unfold included; intros; apply H0; apply H; apply H1. Qed. Lemma interior_P3 : forall D:R -> Prop, open_set (interior D). Proof. intro; unfold open_set, interior; unfold neighbourhood; intros; elim H; intros. exists x0; unfold included; intros. set (del := x0 - Rabs (x - x1)). cut (0 < del). intro; exists (mkposreal del H2); intros. cut (included (disc x1 (mkposreal del H2)) (disc x x0)). intro; assert (H5 := included_trans _ _ _ H4 H0). apply H5; apply H3. unfold included; unfold disc; intros. apply Rle_lt_trans with (Rabs (x3 - x1) + Rabs (x1 - x)). replace (x3 - x) with (x3 - x1 + (x1 - x)); [ apply Rabs_triang | ring ]. replace (pos x0) with (del + Rabs (x1 - x)). do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l; apply H4. unfold del; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr; ring. unfold del; apply Rplus_lt_reg_l with (Rabs (x - x1)); rewrite Rplus_0_r; replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0); [ idtac | ring ]. unfold disc in H1; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H1. Qed. Lemma complementary_P1 : forall D:R -> Prop, ~ (exists y : R, intersection_domain D (complementary D) y). Proof. intro; red; intro; elim H; intros; unfold intersection_domain, complementary in H0; elim H0; intros; elim H2; assumption. Qed. Lemma adherence_P2 : forall D:R -> Prop, closed_set D -> included (adherence D) D. Proof. unfold closed_set; unfold open_set, complementary; intros; unfold included, adherence; intros; assert (H1 := classic (D x)); elim H1; intro. assumption. assert (H3 := H _ H2); assert (H4 := H0 _ H3); elim H4; intros; unfold intersection_domain in H5; elim H5; intros; elim H6; assumption. Qed. Lemma adherence_P3 : forall D:R -> Prop, closed_set (adherence D). Proof. intro; unfold closed_set, adherence; unfold open_set, complementary, point_adherent; intros; set (P := fun V:R -> Prop => neighbourhood V x -> exists y : R, intersection_domain V D y); assert (H0 := not_all_ex_not _ P H); elim H0; intros V0 H1; unfold P in H1; assert (H2 := imply_to_and _ _ H1); unfold neighbourhood; elim H2; intros; unfold neighbourhood in H3; elim H3; intros; exists x0; unfold included; intros; red; intro. assert (H8 := H7 V0); cut (exists delta : posreal, (forall x:R, disc x1 delta x -> V0 x)). intro; assert (H10 := H8 H9); elim H4; assumption. cut (0 < x0 - Rabs (x - x1)). intro; set (del := mkposreal _ H9); exists del; intros; unfold included in H5; apply H5; unfold disc; apply Rle_lt_trans with (Rabs (x2 - x1) + Rabs (x1 - x)). replace (x2 - x) with (x2 - x1 + (x1 - x)); [ apply Rabs_triang | ring ]. replace (pos x0) with (del + Rabs (x1 - x)). do 2 rewrite <- (Rplus_comm (Rabs (x1 - x))); apply Rplus_lt_compat_l; apply H10. unfold del; simpl; rewrite <- (Rabs_Ropp (x - x1)); rewrite Ropp_minus_distr; ring. apply Rplus_lt_reg_l with (Rabs (x - x1)); rewrite Rplus_0_r; replace (Rabs (x - x1) + (x0 - Rabs (x - x1))) with (pos x0); [ rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H6 | ring ]. Qed. Definition eq_Dom (D1 D2:R -> Prop) : Prop := included D1 D2 /\ included D2 D1. Infix "=_D" := eq_Dom (at level 70, no associativity). Lemma open_set_P1 : forall D:R -> Prop, open_set D <-> D =_D interior D. Proof. intro; split. intro; unfold eq_Dom; split. apply interior_P2; assumption. apply interior_P1. intro; unfold eq_Dom in H; elim H; clear H; intros; unfold open_set; intros; unfold included, interior in H; unfold included in H0; apply (H _ H1). Qed. Lemma closed_set_P1 : forall D:R -> Prop, closed_set D <-> D =_D adherence D. Proof. intro; split. intro; unfold eq_Dom; split. apply adherence_P1. apply adherence_P2; assumption. unfold eq_Dom; unfold included; intros; assert (H0 := adherence_P3 D); unfold closed_set in H0; unfold closed_set; unfold open_set; unfold open_set in H0; intros; assert (H2 : complementary (adherence D) x). unfold complementary; unfold complementary in H1; red; intro; elim H; clear H; intros _ H; elim H1; apply (H _ H2). assert (H3 := H0 _ H2); unfold neighbourhood; unfold neighbourhood in H3; elim H3; intros; exists x0; unfold included; unfold included in H4; intros; assert (H6 := H4 _ H5); unfold complementary in H6; unfold complementary; red; intro; elim H; clear H; intros H _; elim H6; apply (H _ H7). Qed. Lemma neighbourhood_P1 : forall (D1 D2:R -> Prop) (x:R), included D1 D2 -> neighbourhood D1 x -> neighbourhood D2 x. Proof. unfold included, neighbourhood; intros; elim H0; intros; exists x0; intros; unfold included; unfold included in H1; intros; apply (H _ (H1 _ H2)). Qed. Lemma open_set_P2 : forall D1 D2:R -> Prop, open_set D1 -> open_set D2 -> open_set (union_domain D1 D2). Proof. unfold open_set; intros; unfold union_domain in H1; elim H1; intro. apply neighbourhood_P1 with D1. unfold included, union_domain; tauto. apply H; assumption. apply neighbourhood_P1 with D2. unfold included, union_domain; tauto. apply H0; assumption. Qed. Lemma open_set_P3 : forall D1 D2:R -> Prop, open_set D1 -> open_set D2 -> open_set (intersection_domain D1 D2). Proof. unfold open_set; intros; unfold intersection_domain in H1; elim H1; intros. assert (H4 := H _ H2); assert (H5 := H0 _ H3); unfold intersection_domain; unfold neighbourhood in H4, H5; elim H4; clear H; intros del1 H; elim H5; clear H0; intros del2 H0; cut (0 < Rmin del1 del2). intro; set (del := mkposreal _ H6). exists del; unfold included; intros; unfold included in H, H0; unfold disc in H, H0, H7. split. apply H; apply Rlt_le_trans with (pos del). apply H7. unfold del; simpl; apply Rmin_l. apply H0; apply Rlt_le_trans with (pos del). apply H7. unfold del; simpl; apply Rmin_r. unfold Rmin; case (Rle_dec del1 del2); intro. apply (cond_pos del1). apply (cond_pos del2). Qed. Lemma open_set_P4 : open_set (fun x:R => False). Proof. unfold open_set; intros; elim H. Qed. Lemma open_set_P5 : open_set (fun x:R => True). Proof. unfold open_set; intros; unfold neighbourhood. exists (mkposreal 1 Rlt_0_1); unfold included; intros; trivial. Qed. Lemma disc_P1 : forall (x:R) (del:posreal), open_set (disc x del). Proof. intros; assert (H := open_set_P1 (disc x del)). elim H; intros; apply H1. unfold eq_Dom; split. unfold included, interior, disc; intros; cut (0 < del - Rabs (x - x0)). intro; set (del2 := mkposreal _ H3). exists del2; unfold included; intros. apply Rle_lt_trans with (Rabs (x1 - x0) + Rabs (x0 - x)). replace (x1 - x) with (x1 - x0 + (x0 - x)); [ apply Rabs_triang | ring ]. replace (pos del) with (del2 + Rabs (x0 - x)). do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l. apply H4. unfold del2; simpl; rewrite <- (Rabs_Ropp (x - x0)); rewrite Ropp_minus_distr; ring. apply Rplus_lt_reg_l with (Rabs (x - x0)); rewrite Rplus_0_r; replace (Rabs (x - x0) + (del - Rabs (x - x0))) with (pos del); [ rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H2 | ring ]. apply interior_P1. Qed. Lemma continuity_P1 : forall (f:R -> R) (x:R), continuity_pt f x <-> (forall W:R -> Prop, neighbourhood W (f x) -> exists V : R -> Prop, neighbourhood V x /\ (forall y:R, V y -> W (f y))). Proof. intros; split. intros; unfold neighbourhood in H0. elim H0; intros del1 H1. unfold continuity_pt in H; unfold continue_in in H; unfold limit1_in in H; unfold limit_in in H; simpl in H; unfold R_dist in H. assert (H2 := H del1 (cond_pos del1)). elim H2; intros del2 H3. elim H3; intros. exists (disc x (mkposreal del2 H4)). intros; unfold included in H1; split. unfold neighbourhood, disc. exists (mkposreal del2 H4). unfold included; intros; assumption. intros; apply H1; unfold disc; case (Req_dec y x); intro. rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos del1). apply H5; split. unfold D_x, no_cond; split. trivial. apply (not_eq_sym (A:=R)); apply H7. unfold disc in H6; apply H6. intros; unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; intros. assert (H1 := H (disc (f x) (mkposreal eps H0))). cut (neighbourhood (disc (f x) (mkposreal eps H0)) (f x)). intro; assert (H3 := H1 H2). elim H3; intros D H4; elim H4; intros; unfold neighbourhood in H5; elim H5; intros del1 H7. exists (pos del1); split. apply (cond_pos del1). intros; elim H8; intros; simpl in H10; unfold R_dist in H10; simpl; unfold R_dist; apply (H6 _ (H7 _ H10)). unfold neighbourhood, disc; exists (mkposreal eps H0); unfold included; intros; assumption. Qed. Definition image_rec (f:R -> R) (D:R -> Prop) (x:R) : Prop := D (f x). (**********) Lemma continuity_P2 : forall (f:R -> R) (D:R -> Prop), continuity f -> open_set D -> open_set (image_rec f D). Proof. intros; unfold open_set in H0; unfold open_set; intros; assert (H2 := continuity_P1 f x); elim H2; intros H3 _; assert (H4 := H3 (H x)); unfold neighbourhood, image_rec; unfold image_rec in H1; assert (H5 := H4 D (H0 (f x) H1)); elim H5; intros V0 H6; elim H6; intros; unfold neighbourhood in H7; elim H7; intros del H9; exists del; unfold included in H9; unfold included; intros; apply (H8 _ (H9 _ H10)). Qed. (**********) Lemma continuity_P3 : forall f:R -> R, continuity f <-> (forall D:R -> Prop, open_set D -> open_set (image_rec f D)). Proof. intros; split. intros; apply continuity_P2; assumption. intros; unfold continuity; unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; cut (open_set (disc (f x) (mkposreal _ H0))). intro; assert (H2 := H _ H1). unfold open_set, image_rec in H2; cut (disc (f x) (mkposreal _ H0) (f x)). intro; assert (H4 := H2 _ H3). unfold neighbourhood in H4; elim H4; intros del H5. exists (pos del); split. apply (cond_pos del). intros; unfold included in H5; apply H5; elim H6; intros; apply H8. unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0. apply disc_P1. Qed. (**********) Theorem Rsepare : forall x y:R, x <> y -> exists V : R -> Prop, (exists W : R -> Prop, neighbourhood V x /\ neighbourhood W y /\ ~ (exists y : R, intersection_domain V W y)). Proof. intros x y Hsep; set (D := Rabs (x - y)). cut (0 < D / 2). intro; exists (disc x (mkposreal _ H)). exists (disc y (mkposreal _ H)); split. unfold neighbourhood; exists (mkposreal _ H); unfold included; tauto. split. unfold neighbourhood; exists (mkposreal _ H); unfold included; tauto. red; intro; elim H0; intros; unfold intersection_domain in H1; elim H1; intros. cut (D < D). intro; elim (Rlt_irrefl _ H4). change (Rabs (x - y) < D); apply Rle_lt_trans with (Rabs (x - x0) + Rabs (x0 - y)). replace (x - y) with (x - x0 + (x0 - y)); [ apply Rabs_triang | ring ]. rewrite (double_var D); apply Rplus_lt_compat. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H2. apply H3. unfold Rdiv; apply Rmult_lt_0_compat. unfold D; apply Rabs_pos_lt; apply (Rminus_eq_contra _ _ Hsep). apply Rinv_0_lt_compat; prove_sup0. Qed. Record family : Type := mkfamily {ind : R -> Prop; f :> R -> R -> Prop; cond_fam : forall x:R, (exists y : R, f x y) -> ind x}. Definition family_open_set (f:family) : Prop := forall x:R, open_set (f x). Definition domain_finite (D:R -> Prop) : Prop := exists l : Rlist, (forall x:R, D x <-> In x l). Definition family_finite (f:family) : Prop := domain_finite (ind f). Definition covering (D:R -> Prop) (f:family) : Prop := forall x:R, D x -> exists y : R, f y x. Definition covering_open_set (D:R -> Prop) (f:family) : Prop := covering D f /\ family_open_set f. Definition covering_finite (D:R -> Prop) (f:family) : Prop := covering D f /\ family_finite f. Lemma restriction_family : forall (f:family) (D:R -> Prop) (x:R), (exists y : R, (fun z1 z2:R => f z1 z2 /\ D z1) x y) -> intersection_domain (ind f) D x. Proof. intros; elim H; intros; unfold intersection_domain; elim H0; intros; split. apply (cond_fam f0); exists x0; assumption. assumption. Qed. Definition subfamily (f:family) (D:R -> Prop) : family := mkfamily (intersection_domain (ind f) D) (fun x y:R => f x y /\ D x) (restriction_family f D). Definition compact (X:R -> Prop) : Prop := forall f:family, covering_open_set X f -> exists D : R -> Prop, covering_finite X (subfamily f D). (**********) Lemma family_P1 : forall (f:family) (D:R -> Prop), family_open_set f -> family_open_set (subfamily f D). Proof. unfold family_open_set; intros; unfold subfamily; simpl; assert (H0 := classic (D x)). elim H0; intro. cut (open_set (f0 x) -> open_set (fun y:R => f0 x y /\ D x)). intro; apply H2; apply H. unfold open_set; unfold neighbourhood; intros; elim H3; intros; assert (H6 := H2 _ H4); elim H6; intros; exists x1; unfold included; intros; split. apply (H7 _ H8). assumption. cut (open_set (fun y:R => False) -> open_set (fun y:R => f0 x y /\ D x)). intro; apply H2; apply open_set_P4. unfold open_set; unfold neighbourhood; intros; elim H3; intros; elim H1; assumption. Qed. Definition bounded (D:R -> Prop) : Prop := exists m : R, (exists M : R, (forall x:R, D x -> m <= x <= M)). Lemma open_set_P6 : forall D1 D2:R -> Prop, open_set D1 -> D1 =_D D2 -> open_set D2. Proof. unfold open_set; unfold neighbourhood; intros. unfold eq_Dom in H0; elim H0; intros. assert (H4 := H _ (H3 _ H1)). elim H4; intros. exists x0; apply included_trans with D1; assumption. Qed. (**********) Lemma compact_P1 : forall X:R -> Prop, compact X -> bounded X. Proof. intros; unfold compact in H; set (D := fun x:R => True); set (g := fun x y:R => Rabs y < x); cut (forall x:R, (exists y : _, g x y) -> True); [ intro | intro; trivial ]. set (f0 := mkfamily D g H0); assert (H1 := H f0); cut (covering_open_set X f0). intro; assert (H3 := H1 H2); elim H3; intros D' H4; unfold covering_finite in H4; elim H4; intros; unfold family_finite in H6; unfold domain_finite in H6; elim H6; intros l H7; unfold bounded; set (r := MaxRlist l). exists (- r); exists r; intros. unfold covering in H5; assert (H9 := H5 _ H8); elim H9; intros; unfold subfamily in H10; simpl in H10; elim H10; intros; assert (H13 := H7 x0); simpl in H13; cut (intersection_domain D D' x0). elim H13; clear H13; intros. assert (H16 := H13 H15); unfold g in H11; split. cut (x0 <= r). intro; cut (Rabs x < r). intro; assert (H19 := Rabs_def2 x r H18); elim H19; intros; left; assumption. apply Rlt_le_trans with x0; assumption. apply (MaxRlist_P1 l x0 H16). cut (x0 <= r). intro; apply Rle_trans with (Rabs x). apply RRle_abs. apply Rle_trans with x0. left; apply H11. assumption. apply (MaxRlist_P1 l x0 H16). unfold intersection_domain, D; tauto. unfold covering_open_set; split. unfold covering; intros; simpl; exists (Rabs x + 1); unfold g; pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. unfold family_open_set; intro; case (Rtotal_order 0 x); intro. apply open_set_P6 with (disc 0 (mkposreal _ H2)). apply disc_P1. unfold eq_Dom; unfold f0; simpl; unfold g, disc; split. unfold included; intros; unfold Rminus in H3; rewrite Ropp_0 in H3; rewrite Rplus_0_r in H3; apply H3. unfold included; intros; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; apply H3. apply open_set_P6 with (fun x:R => False). apply open_set_P4. unfold eq_Dom; split. unfold included; intros; elim H3. unfold included, f0; simpl; unfold g; intros; elim H2; intro; [ rewrite <- H4 in H3; assert (H5 := Rabs_pos x0); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H5 H3)) | assert (H6 := Rabs_pos x0); assert (H7 := Rlt_trans _ _ _ H3 H4); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 H7)) ]. Qed. (**********) Lemma compact_P2 : forall X:R -> Prop, compact X -> closed_set X. Proof. intros; assert (H0 := closed_set_P1 X); elim H0; clear H0; intros _ H0; apply H0; clear H0. unfold eq_Dom; split. apply adherence_P1. unfold included; unfold adherence; unfold point_adherent; intros; unfold compact in H; assert (H1 := classic (X x)); elim H1; clear H1; intro. assumption. cut (forall y:R, X y -> 0 < Rabs (y - x) / 2). intro; set (D := X); set (g := fun y z:R => Rabs (y - z) < Rabs (y - x) / 2 /\ D y); cut (forall x:R, (exists y : _, g x y) -> D x). intro; set (f0 := mkfamily D g H3); assert (H4 := H f0); cut (covering_open_set X f0). intro; assert (H6 := H4 H5); elim H6; clear H6; intros D' H6. unfold covering_finite in H6; decompose [and] H6; unfold covering, subfamily in H7; simpl in H7; unfold family_finite, subfamily in H8; simpl in H8; unfold domain_finite in H8; elim H8; clear H8; intros l H8; set (alp := MinRlist (AbsList l x)); cut (0 < alp). intro; assert (H10 := H0 (disc x (mkposreal _ H9))); cut (neighbourhood (disc x (mkposreal alp H9)) x). intro; assert (H12 := H10 H11); elim H12; clear H12; intros y H12; unfold intersection_domain in H12; elim H12; clear H12; intros; assert (H14 := H7 _ H13); elim H14; clear H14; intros y0 H14; elim H14; clear H14; intros; unfold g in H14; elim H14; clear H14; intros; unfold disc in H12; simpl in H12; cut (alp <= Rabs (y0 - x) / 2). intro; assert (H18 := Rlt_le_trans _ _ _ H12 H17); cut (Rabs (y0 - x) < Rabs (y0 - x)). intro; elim (Rlt_irrefl _ H19). apply Rle_lt_trans with (Rabs (y0 - y) + Rabs (y - x)). replace (y0 - x) with (y0 - y + (y - x)); [ apply Rabs_triang | ring ]. rewrite (double_var (Rabs (y0 - x))); apply Rplus_lt_compat; assumption. apply (MinRlist_P1 (AbsList l x) (Rabs (y0 - x) / 2)); apply AbsList_P1; elim (H8 y0); clear H8; intros; apply H8; unfold intersection_domain; split; assumption. assert (H11 := disc_P1 x (mkposreal alp H9)); unfold open_set in H11; apply H11. unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply H9. unfold alp; apply MinRlist_P2; intros; assert (H10 := AbsList_P2 _ _ _ H9); elim H10; clear H10; intros z H10; elim H10; clear H10; intros; rewrite H11; apply H2; elim (H8 z); clear H8; intros; assert (H13 := H12 H10); unfold intersection_domain, D in H13; elim H13; clear H13; intros; assumption. unfold covering_open_set; split. unfold covering; intros; exists x0; simpl; unfold g; split. unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; unfold Rminus in H2; apply (H2 _ H5). apply H5. unfold family_open_set; intro; simpl; unfold g; elim (classic (D x0)); intro. apply open_set_P6 with (disc x0 (mkposreal _ (H2 _ H5))). apply disc_P1. unfold eq_Dom; split. unfold included, disc; simpl; intros; split. rewrite <- (Rabs_Ropp (x0 - x1)); rewrite Ropp_minus_distr; apply H6. apply H5. unfold included, disc; simpl; intros; elim H6; intros; rewrite <- (Rabs_Ropp (x1 - x0)); rewrite Ropp_minus_distr; apply H7. apply open_set_P6 with (fun z:R => False). apply open_set_P4. unfold eq_Dom; split. unfold included; intros; elim H6. unfold included; intros; elim H6; intros; elim H5; assumption. intros; elim H3; intros; unfold g in H4; elim H4; clear H4; intros _ H4; apply H4. intros; unfold Rdiv; apply Rmult_lt_0_compat. apply Rabs_pos_lt; apply Rminus_eq_contra; red; intro; rewrite H3 in H2; elim H1; apply H2. apply Rinv_0_lt_compat; prove_sup0. Qed. (**********) Lemma compact_EMP : compact (fun _:R => False). Proof. unfold compact; intros; exists (fun x:R => False); unfold covering_finite; split. unfold covering; intros; elim H0. unfold family_finite; unfold domain_finite; exists nil; intro. split. simpl; unfold intersection_domain; intros; elim H0. elim H0; clear H0; intros _ H0; elim H0. simpl; intro; elim H0. Qed. Lemma compact_eqDom : forall X1 X2:R -> Prop, compact X1 -> X1 =_D X2 -> compact X2. Proof. unfold compact; intros; unfold eq_Dom in H0; elim H0; clear H0; unfold included; intros; assert (H3 : covering_open_set X1 f0). unfold covering_open_set; unfold covering_open_set in H1; elim H1; clear H1; intros; split. unfold covering in H1; unfold covering; intros; apply (H1 _ (H0 _ H4)). apply H3. elim (H _ H3); intros D H4; exists D; unfold covering_finite; unfold covering_finite in H4; elim H4; intros; split. unfold covering in H5; unfold covering; intros; apply (H5 _ (H2 _ H7)). apply H6. Qed. (** Borel-Lebesgue's lemma *) Lemma compact_P3 : forall a b:R, compact (fun c:R => a <= c <= b). Proof. intros a b; destruct (Rle_dec a b) as [Hle|Hnle]. unfold compact; intros f0 (H,H5); set (A := fun x:R => a <= x <= b /\ (exists D : R -> Prop, covering_finite (fun c:R => a <= c <= x) (subfamily f0 D))). cut (A a); [intro H0|]. cut (bound A); [intro H1|]. cut (exists a0 : R, A a0); [intro H2|]. pose proof (completeness A H1 H2) as (m,H3); unfold is_lub in H3. cut (a <= m <= b); [intro H4|]. unfold covering in H; pose proof (H m H4) as (y0,H6). unfold family_open_set in H5; pose proof (H5 y0 m H6) as (eps,H8). cut (exists x : R, A x /\ m - eps < x <= m); [intros (x,((H9 & Dx & H12 & H13),(Hltx,_)))|]. destruct (Req_dec m b) as [->|H11]. set (Db := fun x:R => Dx x \/ x = y0); exists Db; unfold covering_finite; split. unfold covering; intros x0 (H14,H18); unfold covering in H12; destruct (Rle_dec x0 x) as [Hle'|Hnle']. cut (a <= x0 <= x); [intro H15|]. pose proof (H12 x0 H15) as (x1 & H16 & H17); exists x1; simpl; unfold Db; split; [ apply H16 | left; apply H17 ]. split; assumption. exists y0; simpl; split. apply H8; unfold disc; rewrite <- Rabs_Ropp, Ropp_minus_distr, Rabs_right. apply Rlt_trans with (b - x). unfold Rminus; apply Rplus_lt_compat_l, Ropp_lt_gt_contravar; auto with real. apply Rplus_lt_reg_l with (x - eps); replace (x - eps + (b - x)) with (b - eps); [ replace (x - eps + eps) with x; [ apply Hltx | ring ] | ring ]. apply Rge_minus, Rle_ge, H18. unfold Db; right; reflexivity. unfold family_finite, domain_finite. intros; unfold family_finite in H13; unfold domain_finite in H13; destruct H13 as (l,H13); exists (cons y0 l); intro; split. intro H14; simpl in H14; unfold intersection_domain in H14; specialize H13 with x0; destruct H13 as (H13,H15); destruct (Req_dec x0 y0) as [H16|H16]. simpl; left; apply H16. simpl; right; apply H13. simpl; unfold intersection_domain; unfold Db in H14; decompose [and or] H14. split; assumption. elim H16; assumption. intro H14; simpl in H14; destruct H14 as [H15|H15]; simpl; unfold intersection_domain. split. apply (cond_fam f0); rewrite H15; exists b; apply H6. unfold Db; right; assumption. simpl; unfold intersection_domain; elim (H13 x0). intros _ H16; assert (H17 := H16 H15); simpl in H17; unfold intersection_domain in H17; split. elim H17; intros; assumption. unfold Db; left; elim H17; intros; assumption. set (m' := Rmin (m + eps / 2) b). cut (A m'); [intro H7|]. destruct H3 as (H14,H15); unfold is_upper_bound in H14. assert (H16 := H14 m' H7). cut (m < m'); [intro H17|]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H16 H17))... unfold m', Rmin; destruct (Rle_dec (m + eps / 2) b) as [Hle'|Hnle']. pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ]. destruct H4 as (_,[]). assumption. elim H11; assumption. unfold A; split. split. apply Rle_trans with m. elim H4; intros; assumption. unfold m'; unfold Rmin; case (Rle_dec (m + eps / 2) b); intro. pattern m at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos eps) | apply Rinv_0_lt_compat; prove_sup0 ]. destruct H4. assumption. unfold m'; apply Rmin_r. set (Db := fun x:R => Dx x \/ x = y0); exists Db; unfold covering_finite; split. unfold covering; intros x0 (H14,H18); unfold covering in H12; destruct (Rle_dec x0 x) as [Hle'|Hnle']. cut (a <= x0 <= x); [intro H15|]. pose proof (H12 x0 H15) as (x1 & H16 & H17); exists x1; simpl; unfold Db; split; [ apply H16 | left; apply H17 ]. split; assumption. exists y0; simpl; split. apply H8; unfold disc, Rabs; destruct (Rcase_abs (x0 - m)) as [Hlt|Hge]. rewrite Ropp_minus_distr; apply Rlt_trans with (m - x). unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_gt_contravar; auto with real. apply Rplus_lt_reg_l with (x - eps); replace (x - eps + (m - x)) with (m - eps). replace (x - eps + eps) with x. assumption. ring. ring. apply Rle_lt_trans with (m' - m). unfold Rminus; do 2 rewrite <- (Rplus_comm (- m)); apply Rplus_le_compat_l; elim H14; intros; assumption. apply Rplus_lt_reg_l with m; replace (m + (m' - m)) with m'. apply Rle_lt_trans with (m + eps / 2). unfold m'; apply Rmin_l. apply Rplus_lt_compat_l; apply Rmult_lt_reg_l with 2. prove_sup0. unfold Rdiv; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym. rewrite Rmult_1_l; pattern (pos eps) at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; apply (cond_pos eps). discrR. ring. unfold Db; right; reflexivity. unfold family_finite, domain_finite; unfold family_finite, domain_finite in H13; destruct H13 as (l,H13); exists (cons y0 l); intro; split. intro H14; simpl in H14; unfold intersection_domain in H14; specialize (H13 x0); destruct H13 as (H13,H15); destruct (Req_dec x0 y0) as [Heq|Hneq]. simpl; left; apply Heq. simpl; right; apply H13; simpl; unfold intersection_domain; unfold Db in H14; decompose [and or] H14. split; assumption. elim Hneq; assumption. intros [H15|H15]. split. apply (cond_fam f0); rewrite H15; exists m; apply H6. unfold Db; right; assumption. elim (H13 x0); intros _ H16. assert (H17 := H16 H15). simpl in H17. unfold intersection_domain in H17. split. elim H17; intros; assumption. unfold Db; left; elim H17; intros; assumption. elim (classic (exists x : R, A x /\ m - eps < x <= m)); intro H9. assumption. elim H3; intros H10 H11; cut (is_upper_bound A (m - eps)). intro H12; assert (H13 := H11 _ H12); cut (m - eps < m). intro H14; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H13 H14)). pattern m at 2; rewrite <- Rplus_0_r; unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_involutive; rewrite Ropp_0; apply (cond_pos eps). set (P := fun n:R => A n /\ m - eps < n <= m); assert (H12 := not_ex_all_not _ P H9); unfold P in H12; unfold is_upper_bound; intros x H13; assert (H14 := not_and_or _ _ (H12 x)); elim H14; intro H15. elim H15; apply H13. destruct (not_and_or _ _ H15) as [H16|H16]. destruct (Rle_dec x (m - eps)) as [H17|H17]. assumption. elim H16; auto with real. unfold is_upper_bound in H10; assert (H17 := H10 x H13); elim H16; apply H17. elim H3; clear H3; intros. unfold is_upper_bound in H3. split. apply (H3 _ H0). clear H5. apply (H4 b); unfold is_upper_bound; intros x H5; unfold A in H5; elim H5; clear H5; intros H5 _; elim H5; clear H5; intros _ H5; apply H5. exists a; apply H0. unfold bound; exists b; unfold is_upper_bound; intros; unfold A in H1; elim H1; clear H1; intros H1 _; elim H1; clear H1; intros _ H1; apply H1. unfold A; split. split; [ right; reflexivity | apply Hle ]. unfold covering in H; cut (a <= a <= b). intro H1; elim (H _ H1); intros y0 H2; set (D' := fun x:R => x = y0); exists D'; unfold covering_finite; split. unfold covering; simpl; intros x H3; cut (x = a). intro H4; exists y0; split. rewrite H4; apply H2. unfold D'; reflexivity. elim H3; intros; apply Rle_antisym; assumption. unfold family_finite; unfold domain_finite; exists (cons y0 nil); intro; split. simpl; unfold intersection_domain; intros (H3,H4). unfold D' in H4; left; apply H4. simpl; unfold intersection_domain; intros [H4|[]]. split; [ rewrite H4; apply (cond_fam f0); exists a; apply H2 | apply H4 ]. split; [ right; reflexivity | apply Hle ]. apply compact_eqDom with (fun c:R => False). apply compact_EMP. unfold eq_Dom; split. unfold included; intros; elim H. unfold included; intros; elim H; clear H; intros; assert (H1 := Rle_trans _ _ _ H H0); elim Hnle; apply H1. Qed. Lemma compact_P4 : forall X F:R -> Prop, compact X -> closed_set F -> included F X -> compact F. Proof. unfold compact; intros; elim (classic (exists z : R, F z)); intro Hyp_F_NE. set (D := ind f0); set (g := f f0); unfold closed_set in H0. set (g' := fun x y:R => f0 x y \/ complementary F y /\ D x). set (D' := D). cut (forall x:R, (exists y : R, g' x y) -> D' x). intro; set (f' := mkfamily D' g' H3); cut (covering_open_set X f'). intro; elim (H _ H4); intros DX H5; exists DX. unfold covering_finite; unfold covering_finite in H5; elim H5; clear H5; intros. split. unfold covering; unfold covering in H5; intros. elim (H5 _ (H1 _ H7)); intros y0 H8; exists y0; simpl in H8; simpl; elim H8; clear H8; intros. split. unfold g' in H8; elim H8; intro. apply H10. elim H10; intros H11 _; unfold complementary in H11; elim H11; apply H7. apply H9. unfold family_finite; unfold domain_finite; unfold family_finite in H6; unfold domain_finite in H6; elim H6; clear H6; intros l H6; exists l; intro; assert (H7 := H6 x); elim H7; clear H7; intros. split. intro; apply H7; simpl; unfold intersection_domain; simpl in H9; unfold intersection_domain in H9; unfold D'; apply H9. intro; assert (H10 := H8 H9); simpl in H10; unfold intersection_domain in H10; simpl; unfold intersection_domain; unfold D' in H10; apply H10. unfold covering_open_set; unfold covering_open_set in H2; elim H2; clear H2; intros. split. unfold covering; unfold covering in H2; intros. elim (classic (F x)); intro. elim (H2 _ H6); intros y0 H7; exists y0; simpl; unfold g'; left; assumption. cut (exists z : R, D z). intro; elim H7; clear H7; intros x0 H7; exists x0; simpl; unfold g'; right. split. unfold complementary; apply H6. apply H7. elim Hyp_F_NE; intros z0 H7. assert (H8 := H2 _ H7). elim H8; clear H8; intros t H8; exists t; apply (cond_fam f0); exists z0; apply H8. unfold family_open_set; intro; simpl; unfold g'; elim (classic (D x)); intro. apply open_set_P6 with (union_domain (f0 x) (complementary F)). apply open_set_P2. unfold family_open_set in H4; apply H4. apply H0. unfold eq_Dom; split. unfold included, union_domain, complementary; intros. elim H6; intro; [ left; apply H7 | right; split; assumption ]. unfold included, union_domain, complementary; intros. elim H6; intro; [ left; apply H7 | right; elim H7; intros; apply H8 ]. apply open_set_P6 with (f0 x). unfold family_open_set in H4; apply H4. unfold eq_Dom; split. unfold included, complementary; intros; left; apply H6. unfold included, complementary; intros. elim H6; intro. apply H7. elim H7; intros _ H8; elim H5; apply H8. intros; elim H3; intros y0 H4; unfold g' in H4; elim H4; intro. apply (cond_fam f0); exists y0; apply H5. elim H5; clear H5; intros _ H5; apply H5. (* Cas ou F est l'ensemble vide *) cut (compact F). intro; apply (H3 f0 H2). apply compact_eqDom with (fun _:R => False). apply compact_EMP. unfold eq_Dom; split. unfold included; intros; elim H3. assert (H3 := not_ex_all_not _ _ Hyp_F_NE); unfold included; intros; elim (H3 x); apply H4. Qed. (**********) Lemma compact_P5 : forall X:R -> Prop, closed_set X -> bounded X -> compact X. Proof. intros; unfold bounded in H0. elim H0; clear H0; intros m H0. elim H0; clear H0; intros M H0. assert (H1 := compact_P3 m M). apply (compact_P4 (fun c:R => m <= c <= M) X H1 H H0). Qed. (**********) Lemma compact_carac : forall X:R -> Prop, compact X <-> closed_set X /\ bounded X. Proof. intro; split. intro; split; [ apply (compact_P2 _ H) | apply (compact_P1 _ H) ]. intro; elim H; clear H; intros; apply (compact_P5 _ H H0). Qed. Definition image_dir (f:R -> R) (D:R -> Prop) (x:R) : Prop := exists y : R, x = f y /\ D y. (**********) Lemma continuity_compact : forall (f:R -> R) (X:R -> Prop), (forall x:R, continuity_pt f x) -> compact X -> compact (image_dir f X). Proof. unfold compact; intros; unfold covering_open_set in H1. elim H1; clear H1; intros. set (D := ind f1). set (g := fun x y:R => image_rec f0 (f1 x) y). cut (forall x:R, (exists y : R, g x y) -> D x). intro; set (f' := mkfamily D g H3). cut (covering_open_set X f'). intro; elim (H0 f' H4); intros D' H5; exists D'. unfold covering_finite in H5; elim H5; clear H5; intros; unfold covering_finite; split. unfold covering, image_dir; simpl; unfold covering in H5; intros; elim H7; intros y H8; elim H8; intros; assert (H11 := H5 _ H10); simpl in H11; elim H11; intros z H12; exists z; unfold g in H12; unfold image_rec in H12; rewrite H9; apply H12. unfold family_finite in H6; unfold domain_finite in H6; unfold family_finite; unfold domain_finite; elim H6; intros l H7; exists l; intro; elim (H7 x); intros; split; intro. apply H8; simpl in H10; simpl; apply H10. apply (H9 H10). unfold covering_open_set; split. unfold covering; intros; simpl; unfold covering in H1; unfold image_dir in H1; unfold g; unfold image_rec; apply H1. exists x; split; [ reflexivity | apply H4 ]. unfold family_open_set; unfold family_open_set in H2; intro; simpl; unfold g; cut ((fun y:R => image_rec f0 (f1 x) y) = image_rec f0 (f1 x)). intro; rewrite H4. apply (continuity_P2 f0 (f1 x) H (H2 x)). reflexivity. intros; apply (cond_fam f1); unfold g in H3; unfold image_rec in H3; elim H3; intros; exists (f0 x0); apply H4. Qed. Lemma prolongement_C0 : forall (f:R -> R) (a b:R), a <= b -> (forall c:R, a <= c <= b -> continuity_pt f c) -> exists g : R -> R, continuity g /\ (forall c:R, a <= c <= b -> g c = f c). Proof. intros; elim H; intro. set (h := fun x:R => match Rle_dec x a with | left _ => f0 a | right _ => match Rle_dec x b with | left _ => f0 x | right _ => f0 b end end). assert (H2 : 0 < b - a). apply Rlt_Rminus; assumption. exists h; split. unfold continuity; intro; case (Rtotal_order x a); intro. unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; exists (a - x); split. change (0 < a - x); apply Rlt_Rminus; assumption. intros; elim H5; clear H5; intros _ H5; unfold h. case (Rle_dec x a) as [|[]]. case (Rle_dec x0 a) as [|[]]. unfold Rminus; rewrite Rplus_opp_r, Rabs_R0; assumption. left; apply Rplus_lt_reg_l with (- x); do 2 rewrite (Rplus_comm (- x)); apply Rle_lt_trans with (Rabs (x0 - x)). apply RRle_abs. assumption. left; assumption. elim H3; intro. assert (H5 : a <= a <= b). split; [ right; reflexivity | left; assumption ]. assert (H6 := H0 _ H5); unfold continuity_pt in H6; unfold continue_in in H6; unfold limit1_in in H6; unfold limit_in in H6; simpl in H6; unfold R_dist in H6; unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; elim (H6 _ H7); intros; exists (Rmin x0 (b - a)); split. unfold Rmin; case (Rle_dec x0 (b - a)); intro. elim H8; intros; assumption. change (0 < b - a); apply Rlt_Rminus; assumption. intros; elim H9; clear H9; intros _ H9; cut (x1 < b). intro; unfold h; case (Rle_dec x a) as [|[]]. case (Rle_dec x1 a) as [Hlta|Hnlea]. unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. case (Rle_dec x1 b) as [Hleb|[]]. elim H8; intros; apply H12; split. unfold D_x, no_cond; split. trivial. red; intro; elim Hnlea; right; symmetry ; assumption. apply Rlt_le_trans with (Rmin x0 (b - a)). rewrite H4 in H9; apply H9. apply Rmin_l. left; assumption. right; assumption. apply Rplus_lt_reg_l with (- a); do 2 rewrite (Rplus_comm (- a)); rewrite H4 in H9; apply Rle_lt_trans with (Rabs (x1 - a)). apply RRle_abs. apply Rlt_le_trans with (Rmin x0 (b - a)). assumption. apply Rmin_r. case (Rtotal_order x b); intro. assert (H6 : a <= x <= b). split; left; assumption. assert (H7 := H0 _ H6); unfold continuity_pt in H7; unfold continue_in in H7; unfold limit1_in in H7; unfold limit_in in H7; simpl in H7; unfold R_dist in H7; unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; elim (H7 _ H8); intros; elim H9; clear H9; intros. assert (H11 : 0 < x - a). apply Rlt_Rminus; assumption. assert (H12 : 0 < b - x). apply Rlt_Rminus; assumption. exists (Rmin x0 (Rmin (x - a) (b - x))); split. unfold Rmin; case (Rle_dec (x - a) (b - x)) as [Hle|Hnle]. case (Rle_dec x0 (x - a)) as [Hlea|Hnlea]. assumption. assumption. case (Rle_dec x0 (b - x)) as [Hleb|Hnleb]. assumption. assumption. intros x1 (H13,H14); cut (a < x1 < b). intro; elim H15; clear H15; intros; unfold h; case (Rle_dec x a) as [Hle|Hnle]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H4)). case (Rle_dec x b) as [|[]]. case (Rle_dec x1 a) as [Hle0|]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle0 H15)). case (Rle_dec x1 b) as [|[]]. apply H10; split. assumption. apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))). assumption. apply Rmin_l. left; assumption. left; assumption. split. apply Ropp_lt_cancel; apply Rplus_lt_reg_l with x; apply Rle_lt_trans with (Rabs (x1 - x)). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs. apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))). assumption. apply Rle_trans with (Rmin (x - a) (b - x)). apply Rmin_r. apply Rmin_l. apply Rplus_lt_reg_l with (- x); do 2 rewrite (Rplus_comm (- x)); apply Rle_lt_trans with (Rabs (x1 - x)). apply RRle_abs. apply Rlt_le_trans with (Rmin x0 (Rmin (x - a) (b - x))). assumption. apply Rle_trans with (Rmin (x - a) (b - x)); apply Rmin_r. elim H5; intro. assert (H7 : a <= b <= b). split; [ left; assumption | right; reflexivity ]. assert (H8 := H0 _ H7); unfold continuity_pt in H8; unfold continue_in in H8; unfold limit1_in in H8; unfold limit_in in H8; simpl in H8; unfold R_dist in H8; unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; elim (H8 _ H9); intros; exists (Rmin x0 (b - a)); split. unfold Rmin; case (Rle_dec x0 (b - a)); intro. elim H10; intros; assumption. change (0 < b - a); apply Rlt_Rminus; assumption. intros; elim H11; clear H11; intros _ H11; cut (a < x1). intro; unfold h; case (Rle_dec x a) as [Hlea|Hnlea]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hlea H4)). case (Rle_dec x1 a) as [Hlea'|Hnlea']. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hlea' H12)). case (Rle_dec x b) as [Hleb|Hnleb]. case (Rle_dec x1 b) as [Hleb'|Hnleb']. rewrite H6; elim H10; intros; destruct Hleb'. apply H14; split. unfold D_x, no_cond; split. trivial. red; intro; rewrite <- H16 in H15; elim (Rlt_irrefl _ H15). rewrite H6 in H11; apply Rlt_le_trans with (Rmin x0 (b - a)). apply H11. apply Rmin_l. rewrite H15; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. rewrite H6; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. elim Hnleb; right; assumption. rewrite H6 in H11; apply Ropp_lt_cancel; apply Rplus_lt_reg_l with b; apply Rle_lt_trans with (Rabs (x1 - b)). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs. apply Rlt_le_trans with (Rmin x0 (b - a)). assumption. apply Rmin_r. unfold continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; simpl; unfold R_dist; intros; exists (x - b); split. change (0 < x - b); apply Rlt_Rminus; assumption. intros; elim H8; clear H8; intros. assert (H10 : b < x0). apply Ropp_lt_cancel; apply Rplus_lt_reg_l with x; apply Rle_lt_trans with (Rabs (x0 - x)). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply RRle_abs. assumption. unfold h; case (Rle_dec x a) as [Hle|Hnle]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle H4)). case (Rle_dec x b) as [Hleb|Hnleb]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hleb H6)). case (Rle_dec x0 a) as [Hlea'|Hnlea']. elim (Rlt_irrefl _ (Rlt_trans _ _ _ H1 (Rlt_le_trans _ _ _ H10 Hlea'))). case (Rle_dec x0 b) as [Hleb'|Hnleb']. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hleb' H10)). unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. intros; elim H3; intros; unfold h; case (Rle_dec c a) as [[|]|]. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H4 H6)). rewrite H6; reflexivity. case (Rle_dec c b) as [|[]]. reflexivity. assumption. exists (fun _:R => f0 a); split. apply derivable_continuous; apply (derivable_const (f0 a)). intros; elim H2; intros; rewrite H1 in H3; cut (b = c). intro; rewrite <- H5; rewrite H1; reflexivity. apply Rle_antisym; assumption. Qed. (**********) Lemma continuity_ab_maj : forall (f:R -> R) (a b:R), a <= b -> (forall c:R, a <= c <= b -> continuity_pt f c) -> exists Mx : R, (forall c:R, a <= c <= b -> f c <= f Mx) /\ a <= Mx <= b. Proof. intros; cut (exists g : R -> R, continuity g /\ (forall c:R, a <= c <= b -> g c = f0 c)). intro HypProl. elim HypProl; intros g Hcont_eq. elim Hcont_eq; clear Hcont_eq; intros Hcont Heq. assert (H1 := compact_P3 a b). assert (H2 := continuity_compact g (fun c:R => a <= c <= b) Hcont H1). assert (H3 := compact_P2 _ H2). assert (H4 := compact_P1 _ H2). cut (bound (image_dir g (fun c:R => a <= c <= b))). cut (exists x : R, image_dir g (fun c:R => a <= c <= b) x). intros; assert (H7 := completeness _ H6 H5). elim H7; clear H7; intros M H7; cut (image_dir g (fun c:R => a <= c <= b) M). intro; unfold image_dir in H8; elim H8; clear H8; intros Mxx H8; elim H8; clear H8; intros; exists Mxx; split. intros; rewrite <- (Heq c H10); rewrite <- (Heq Mxx H9); intros; rewrite <- H8; unfold is_lub in H7; elim H7; clear H7; intros H7 _; unfold is_upper_bound in H7; apply H7; unfold image_dir; exists c; split; [ reflexivity | apply H10 ]. apply H9. elim (classic (image_dir g (fun c:R => a <= c <= b) M)); intro. assumption. cut (exists eps : posreal, (forall y:R, ~ intersection_domain (disc M eps) (image_dir g (fun c:R => a <= c <= b)) y)). intro; elim H9; clear H9; intros eps H9; unfold is_lub in H7; elim H7; clear H7; intros; cut (is_upper_bound (image_dir g (fun c:R => a <= c <= b)) (M - eps)). intro; assert (H12 := H10 _ H11); cut (M - eps < M). intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H12 H13)). pattern M at 2; rewrite <- Rplus_0_r; unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_cancel; rewrite Ropp_0; rewrite Ropp_involutive; apply (cond_pos eps). unfold is_upper_bound, image_dir; intros; cut (x <= M). intro; destruct (Rle_dec x (M - eps)) as [H13|]. apply H13. elim (H9 x); unfold intersection_domain, disc, image_dir; split. rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; rewrite Rabs_right. apply Rplus_lt_reg_l with (x - eps); replace (x - eps + (M - x)) with (M - eps). replace (x - eps + eps) with x. auto with real. ring. ring. apply Rge_minus; apply Rle_ge; apply H12. apply H11. apply H7; apply H11. cut (exists V : R -> Prop, neighbourhood V M /\ (forall y:R, ~ intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y)). intro; elim H9; intros V H10; elim H10; clear H10; intros. unfold neighbourhood in H10; elim H10; intros del H12; exists del; intros; red; intro; elim (H11 y). unfold intersection_domain; unfold intersection_domain in H13; elim H13; clear H13; intros; split. apply (H12 _ H13). apply H14. cut (~ point_adherent (image_dir g (fun c:R => a <= c <= b)) M). intro; unfold point_adherent in H9. assert (H10 := not_all_ex_not _ (fun V:R -> Prop => neighbourhood V M -> exists y : R, intersection_domain V (image_dir g (fun c:R => a <= c <= b)) y) H9). elim H10; intros V0 H11; exists V0; assert (H12 := imply_to_and _ _ H11); elim H12; clear H12; intros. split. apply H12. apply (not_ex_all_not _ _ H13). red; intro; cut (adherence (image_dir g (fun c:R => a <= c <= b)) M). intro; elim (closed_set_P1 (image_dir g (fun c:R => a <= c <= b))); intros H11 _; assert (H12 := H11 H3). elim H8. unfold eq_Dom in H12; elim H12; clear H12; intros. apply (H13 _ H10). apply H9. exists (g a); unfold image_dir; exists a; split. reflexivity. split; [ right; reflexivity | apply H ]. unfold bound; unfold bounded in H4; elim H4; clear H4; intros m H4; elim H4; clear H4; intros M H4; exists M; unfold is_upper_bound; intros; elim (H4 _ H5); intros _ H6; apply H6. apply prolongement_C0; assumption. Qed. (**********) Lemma continuity_ab_min : forall (f:R -> R) (a b:R), a <= b -> (forall c:R, a <= c <= b -> continuity_pt f c) -> exists mx : R, (forall c:R, a <= c <= b -> f mx <= f c) /\ a <= mx <= b. Proof. intros. cut (forall c:R, a <= c <= b -> continuity_pt (- f0) c). intro; assert (H2 := continuity_ab_maj (- f0)%F a b H H1); elim H2; intros x0 H3; exists x0; intros; split. intros; rewrite <- (Ropp_involutive (f0 x0)); rewrite <- (Ropp_involutive (f0 c)); apply Ropp_le_contravar; elim H3; intros; unfold opp_fct in H5; apply H5; apply H4. elim H3; intros; assumption. intros. assert (H2 := H0 _ H1). apply (continuity_pt_opp _ _ H2). Qed. (********************************************************) (** * Proof of Bolzano-Weierstrass theorem *) (********************************************************) Definition ValAdh (un:nat -> R) (x:R) : Prop := forall (V:R -> Prop) (N:nat), neighbourhood V x -> exists p : nat, (N <= p)%nat /\ V (un p). Definition intersection_family (f:family) (x:R) : Prop := forall y:R, ind f y -> f y x. Lemma ValAdh_un_exists : forall (un:nat -> R) (D:=fun x:R => exists n : nat, x = INR n) (f:= fun x:R => adherence (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x)) (x:R), (exists y : R, f x y) -> D x. Proof. intros; elim H; intros; unfold f in H0; unfold adherence in H0; unfold point_adherent in H0; assert (H1 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0). unfold neighbourhood, disc; exists (mkposreal _ Rlt_0_1); unfold included; trivial. elim (H0 _ H1); intros; unfold intersection_domain in H2; elim H2; intros; elim H4; intros; apply H6. Qed. Definition ValAdh_un (un:nat -> R) : R -> Prop := let D := fun x:R => exists n : nat, x = INR n in let f := fun x:R => adherence (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x) in intersection_family (mkfamily D f (ValAdh_un_exists un)). Lemma ValAdh_un_prop : forall (un:nat -> R) (x:R), ValAdh un x <-> ValAdh_un un x. Proof. intros; split; intro. unfold ValAdh in H; unfold ValAdh_un; unfold intersection_family; simpl; intros; elim H0; intros N H1; unfold adherence; unfold point_adherent; intros; elim (H V N H2); intros; exists (un x0); unfold intersection_domain; elim H3; clear H3; intros; split. assumption. split. exists x0; split; [ reflexivity | rewrite H1; apply (le_INR _ _ H3) ]. exists N; assumption. unfold ValAdh; intros; unfold ValAdh_un in H; unfold intersection_family in H; simpl in H; assert (H1 : adherence (fun y0:R => (exists p : nat, y0 = un p /\ INR N <= INR p) /\ (exists n : nat, INR N = INR n)) x). apply H; exists N; reflexivity. unfold adherence in H1; unfold point_adherent in H1; assert (H2 := H1 _ H0); elim H2; intros; unfold intersection_domain in H3; elim H3; clear H3; intros; elim H4; clear H4; intros; elim H4; clear H4; intros; elim H4; clear H4; intros; exists x1; split. apply (INR_le _ _ H6). rewrite H4 in H3; apply H3. Qed. Lemma adherence_P4 : forall F G:R -> Prop, included F G -> included (adherence F) (adherence G). Proof. unfold adherence, included; unfold point_adherent; intros; elim (H0 _ H1); unfold intersection_domain; intros; elim H2; clear H2; intros; exists x0; split; [ assumption | apply (H _ H3) ]. Qed. Definition family_closed_set (f:family) : Prop := forall x:R, closed_set (f x). Definition intersection_vide_in (D:R -> Prop) (f:family) : Prop := forall x:R, (ind f x -> included (f x) D) /\ ~ (exists y : R, intersection_family f y). Definition intersection_vide_finite_in (D:R -> Prop) (f:family) : Prop := intersection_vide_in D f /\ family_finite f. (**********) Lemma compact_P6 : forall X:R -> Prop, compact X -> (exists z : R, X z) -> forall g:family, family_closed_set g -> intersection_vide_in X g -> exists D : R -> Prop, intersection_vide_finite_in X (subfamily g D). Proof. intros X H Hyp g H0 H1. set (D' := ind g). set (f' := fun x y:R => complementary (g x) y /\ D' x). assert (H2 : forall x:R, (exists y : R, f' x y) -> D' x). intros; elim H2; intros; unfold f' in H3; elim H3; intros; assumption. set (f0 := mkfamily D' f' H2). unfold compact in H; assert (H3 : covering_open_set X f0). unfold covering_open_set; split. unfold covering; intros; unfold intersection_vide_in in H1; elim (H1 x); intros; unfold intersection_family in H5; assert (H6 := not_ex_all_not _ (fun y:R => forall y0:R, ind g y0 -> g y0 y) H5 x); assert (H7 := not_all_ex_not _ (fun y0:R => ind g y0 -> g y0 x) H6); elim H7; intros; exists x0; elim (imply_to_and _ _ H8); intros; unfold f0; simpl; unfold f'; split; [ apply H10 | apply H9 ]. unfold family_open_set; intro; elim (classic (D' x)); intro. apply open_set_P6 with (complementary (g x)). unfold family_closed_set in H0; unfold closed_set in H0; apply H0. unfold f0; simpl; unfold f'; unfold eq_Dom; split. unfold included; intros; split; [ apply H4 | apply H3 ]. unfold included; intros; elim H4; intros; assumption. apply open_set_P6 with (fun _:R => False). apply open_set_P4. unfold eq_Dom; unfold included; split; intros; [ elim H4 | simpl in H4; unfold f' in H4; elim H4; intros; elim H3; assumption ]. elim (H _ H3); intros SF H4; exists SF; unfold intersection_vide_finite_in; split. unfold intersection_vide_in; simpl; intros; split. intros; unfold included; intros; unfold intersection_vide_in in H1; elim (H1 x); intros; elim H6; intros; apply H7. unfold intersection_domain in H5; elim H5; intros; assumption. assumption. elim (classic (exists y : R, intersection_domain (ind g) SF y)); intro Hyp'. red; intro; elim H5; intros; unfold intersection_family in H6; simpl in H6. cut (X x0). intro; unfold covering_finite in H4; elim H4; clear H4; intros H4 _; unfold covering in H4; elim (H4 x0 H7); intros; simpl in H8; unfold intersection_domain in H6; cut (ind g x1 /\ SF x1). intro; assert (H10 := H6 x1 H9); elim H10; clear H10; intros H10 _; elim H8; clear H8; intros H8 _; unfold f' in H8; unfold complementary in H8; elim H8; clear H8; intros H8 _; elim H8; assumption. split. apply (cond_fam f0). exists x0; elim H8; intros; assumption. elim H8; intros; assumption. unfold intersection_vide_in in H1; elim Hyp'; intros; assert (H8 := H6 _ H7); elim H8; intros; cut (ind g x1). intro; elim (H1 x1); intros; apply H12. apply H11. apply H9. apply (cond_fam g); exists x0; assumption. unfold covering_finite in H4; elim H4; clear H4; intros H4 _; cut (exists z : R, X z). intro; elim H5; clear H5; intros; unfold covering in H4; elim (H4 x0 H5); intros; simpl in H6; elim Hyp'; exists x1; elim H6; intros; unfold intersection_domain; split. apply (cond_fam f0); exists x0; apply H7. apply H8. apply Hyp. unfold covering_finite in H4; elim H4; clear H4; intros; unfold family_finite in H5; unfold domain_finite in H5; unfold family_finite; unfold domain_finite; elim H5; clear H5; intros l H5; exists l; intro; elim (H5 x); intros; split; intro; [ apply H6; simpl; simpl in H8; apply H8 | apply (H7 H8) ]. Qed. Theorem Bolzano_Weierstrass : forall (un:nat -> R) (X:R -> Prop), compact X -> (forall n:nat, X (un n)) -> exists l : R, ValAdh un l. Proof. intros; cut (exists l : R, ValAdh_un un l). intro; elim H1; intros; exists x; elim (ValAdh_un_prop un x); intros; apply (H4 H2). assert (H1 : exists z : R, X z). exists (un 0%nat); apply H0. set (D := fun x:R => exists n : nat, x = INR n). set (g := fun x:R => adherence (fun y:R => (exists p : nat, y = un p /\ x <= INR p) /\ D x)). assert (H2 : forall x:R, (exists y : R, g x y) -> D x). intros; elim H2; intros; unfold g in H3; unfold adherence in H3; unfold point_adherent in H3. assert (H4 : neighbourhood (disc x0 (mkposreal _ Rlt_0_1)) x0). unfold neighbourhood; exists (mkposreal _ Rlt_0_1); unfold included; trivial. elim (H3 _ H4); intros; unfold intersection_domain in H5; decompose [and] H5; assumption. set (f0 := mkfamily D g H2). assert (H3 := compact_P6 X H H1 f0). elim (classic (exists l : R, ValAdh_un un l)); intro. assumption. cut (family_closed_set f0). intro; cut (intersection_vide_in X f0). intro; assert (H7 := H3 H5 H6). elim H7; intros SF H8; unfold intersection_vide_finite_in in H8; elim H8; clear H8; intros; unfold intersection_vide_in in H8; elim (H8 0); intros _ H10; elim H10; unfold family_finite in H9; unfold domain_finite in H9; elim H9; clear H9; intros l H9; set (r := MaxRlist l); cut (D r). intro; unfold D in H11; elim H11; intros; exists (un x); unfold intersection_family; simpl; unfold intersection_domain; intros; split. unfold g; apply adherence_P1; split. exists x; split; [ reflexivity | rewrite <- H12; unfold r; apply MaxRlist_P1; elim (H9 y); intros; apply H14; simpl; apply H13 ]. elim H13; intros; assumption. elim H13; intros; assumption. elim (H9 r); intros. simpl in H12; unfold intersection_domain in H12; cut (In r l). intro; elim (H12 H13); intros; assumption. unfold r; apply MaxRlist_P2; cut (exists z : R, intersection_domain (ind f0) SF z). intro; elim H13; intros; elim (H9 x); intros; simpl in H15; assert (H17 := H15 H14); exists x; apply H17. elim (classic (exists z : R, intersection_domain (ind f0) SF z)); intro. assumption. elim (H8 0); intros _ H14; elim H1; intros; assert (H16 := not_ex_all_not _ (fun y:R => intersection_family (subfamily f0 SF) y) H14); assert (H17 := not_ex_all_not _ (fun z:R => intersection_domain (ind f0) SF z) H13); assert (H18 := H16 x); unfold intersection_family in H18; simpl in H18; assert (H19 := not_all_ex_not _ (fun y:R => intersection_domain D SF y -> g y x /\ SF y) H18); elim H19; intros; assert (H21 := imply_to_and _ _ H20); elim (H17 x0); elim H21; intros; assumption. unfold intersection_vide_in; intros; split. intro; simpl in H6; unfold f0; simpl; unfold g; apply included_trans with (adherence X). apply adherence_P4. unfold included; intros; elim H7; intros; elim H8; intros; elim H10; intros; rewrite H11; apply H0. apply adherence_P2; apply compact_P2; assumption. apply H4. unfold family_closed_set; unfold f0; simpl; unfold g; intro; apply adherence_P3. Qed. (********************************************************) (** * Proof of Heine's theorem *) (********************************************************) Definition uniform_continuity (f:R -> R) (X:R -> Prop) : Prop := forall eps:posreal, exists delta : posreal, (forall x y:R, X x -> X y -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps). Lemma is_lub_u : forall (E:R -> Prop) (x y:R), is_lub E x -> is_lub E y -> x = y. Proof. unfold is_lub; intros; elim H; elim H0; intros; apply Rle_antisym; [ apply (H4 _ H1) | apply (H2 _ H3) ]. Qed. Lemma domain_P1 : forall X:R -> Prop, ~ (exists y : R, X y) \/ (exists y : R, X y /\ (forall x:R, X x -> x = y)) \/ (exists x : R, (exists y : R, X x /\ X y /\ x <> y)). Proof. intro; elim (classic (exists y : R, X y)); intro. right; elim H; intros; elim (classic (exists y : R, X y /\ y <> x)); intro. right; elim H1; intros; elim H2; intros; exists x; exists x0; intros. split; [ assumption | split; [ assumption | apply (not_eq_sym (A:=R)); assumption ] ]. left; exists x; split. assumption. intros; case (Req_dec x0 x); intro. assumption. elim H1; exists x0; split; assumption. left; assumption. Qed. Theorem Heine : forall (f:R -> R) (X:R -> Prop), compact X -> (forall x:R, X x -> continuity_pt f x) -> uniform_continuity f X. Proof. intros f0 X H0 H; elim (domain_P1 X); intro Hyp. (* X is empty *) unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1); intros; elim Hyp; exists x; assumption. elim Hyp; clear Hyp; intro Hyp. (* X has only one element *) unfold uniform_continuity; intros; exists (mkposreal _ Rlt_0_1); intros; elim Hyp; clear Hyp; intros; elim H4; clear H4; intros; assert (H6 := H5 _ H1); assert (H7 := H5 _ H2); rewrite H6; rewrite H7; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (cond_pos eps). (* X has at least two distinct elements *) assert (X_enc : exists m : R, (exists M : R, (forall x:R, X x -> m <= x <= M) /\ m < M)). assert (H1 := compact_P1 X H0); unfold bounded in H1; elim H1; intros; elim H2; intros; exists x; exists x0; split. apply H3. elim Hyp; intros; elim H4; intros; decompose [and] H5; assert (H10 := H3 _ H6); assert (H11 := H3 _ H8); elim H10; intros; elim H11; intros; destruct (total_order_T x x0) as [[|H15]|H15]. assumption. rewrite H15 in H13, H7; elim H9; apply Rle_antisym; apply Rle_trans with x0; assumption. elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H13 H14) H15)). elim X_enc; clear X_enc; intros m X_enc; elim X_enc; clear X_enc; intros M X_enc; elim X_enc; clear X_enc Hyp; intros X_enc Hyp; unfold uniform_continuity; intro; assert (H1 : forall t:posreal, 0 < t / 2). intro; unfold Rdiv; apply Rmult_lt_0_compat; [ apply (cond_pos t) | apply Rinv_0_lt_compat; prove_sup0 ]. set (g := fun x y:R => X x /\ (exists del : posreal, (forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\ is_lub (fun zeta:R => 0 < zeta <= M - m /\ (forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2)) del /\ disc x (mkposreal (del / 2) (H1 del)) y)). assert (H2 : forall x:R, (exists y : R, g x y) -> X x). intros; elim H2; intros; unfold g in H3; elim H3; clear H3; intros H3 _; apply H3. set (f' := mkfamily X g H2); unfold compact in H0; assert (H3 : covering_open_set X f'). unfold covering_open_set; split. unfold covering; intros; exists x; simpl; unfold g; split. assumption. assert (H4 := H _ H3); unfold continuity_pt in H4; unfold continue_in in H4; unfold limit1_in in H4; unfold limit_in in H4; simpl in H4; unfold R_dist in H4; elim (H4 (eps / 2) (H1 eps)); intros; set (E := fun zeta:R => 0 < zeta <= M - m /\ (forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2)); assert (H6 : bound E). unfold bound; exists (M - m); unfold is_upper_bound; unfold E; intros; elim H6; clear H6; intros H6 _; elim H6; clear H6; intros _ H6; apply H6. assert (H7 : exists x : R, E x). elim H5; clear H5; intros; exists (Rmin x0 (M - m)); unfold E; intros; split. split. unfold Rmin; case (Rle_dec x0 (M - m)); intro. apply H5. apply Rlt_Rminus; apply Hyp. apply Rmin_r. intros; case (Req_dec x z); intro. rewrite H9; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (H1 eps). apply H7; split. unfold D_x, no_cond; split; [ trivial | assumption ]. apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H8 | apply Rmin_l ]. destruct (completeness _ H6 H7) as (x1,p). cut (0 < x1 <= M - m). intros (H8,H9); exists (mkposreal _ H8); split. intros; cut (exists alp : R, Rabs (z - x) < alp <= x1 /\ E alp). intros; elim H11; intros; elim H12; clear H12; intros; unfold E in H13; elim H13; intros; apply H15. elim H12; intros; assumption. elim (classic (exists alp : R, Rabs (z - x) < alp <= x1 /\ E alp)); intro. assumption. assert (H12 := not_ex_all_not _ (fun alp:R => Rabs (z - x) < alp <= x1 /\ E alp) H11); unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))). intro; assert (H16 := H14 _ H15); elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H10 H16)). unfold is_upper_bound; intros; unfold is_upper_bound in H13; assert (H16 := H13 _ H15); case (Rle_dec x2 (Rabs (z - x))); intro. assumption. elim (H12 x2); split; [ split; [ auto with real | assumption ] | assumption ]. split. apply p. unfold disc; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; simpl; unfold Rdiv; apply Rmult_lt_0_compat; [ apply H8 | apply Rinv_0_lt_compat; prove_sup0 ]. elim H7; intros; unfold E in H8; elim H8; intros H9 _; elim H9; intros H10 _; unfold is_lub in p; elim p; intros; unfold is_upper_bound in H12; unfold is_upper_bound in H11; split. apply Rlt_le_trans with x2; [ assumption | apply (H11 _ H8) ]. apply H12; intros; unfold E in H13; elim H13; intros; elim H14; intros; assumption. unfold family_open_set; intro; simpl; elim (classic (X x)); intro. unfold g; unfold open_set; intros; elim H4; clear H4; intros _ H4; elim H4; clear H4; intros; elim H4; clear H4; intros; unfold neighbourhood; case (Req_dec x x0); intro. exists (mkposreal _ (H1 x1)); rewrite <- H6; unfold included; intros; split. assumption. exists x1; split. apply H4. split. elim H5; intros; apply H8. apply H7. set (d := x1 / 2 - Rabs (x0 - x)); assert (H7 : 0 < d). unfold d; apply Rlt_Rminus; elim H5; clear H5; intros; unfold disc in H7; apply H7. exists (mkposreal _ H7); unfold included; intros; split. assumption. exists x1; split. apply H4. elim H5; intros; split. assumption. unfold disc in H8; simpl in H8; unfold disc; simpl; unfold disc in H10; simpl in H10; apply Rle_lt_trans with (Rabs (x2 - x0) + Rabs (x0 - x)). replace (x2 - x) with (x2 - x0 + (x0 - x)); [ apply Rabs_triang | ring ]. replace (x1 / 2) with (d + Rabs (x0 - x)); [ idtac | unfold d; ring ]. do 2 rewrite <- (Rplus_comm (Rabs (x0 - x))); apply Rplus_lt_compat_l; apply H8. apply open_set_P6 with (fun _:R => False). apply open_set_P4. unfold eq_Dom; unfold included; intros; split. intros; elim H4. intros; unfold g in H4; elim H4; clear H4; intros H4 _; elim H3; apply H4. elim (H0 _ H3); intros DF H4; unfold covering_finite in H4; elim H4; clear H4; intros; unfold family_finite in H5; unfold domain_finite in H5; unfold covering in H4; simpl in H4; simpl in H5; elim H5; clear H5; intros l H5; unfold intersection_domain in H5; cut (forall x:R, In x l -> exists del : R, 0 < del /\ (forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\ included (g x) (fun z:R => Rabs (z - x) < del / 2)). intros; assert (H7 := Rlist_P1 l (fun x del:R => 0 < del /\ (forall z:R, Rabs (z - x) < del -> Rabs (f0 z - f0 x) < eps / 2) /\ included (g x) (fun z:R => Rabs (z - x) < del / 2)) H6); elim H7; clear H7; intros l' H7; elim H7; clear H7; intros; set (D := MinRlist l'); cut (0 < D / 2). intro; exists (mkposreal _ H9); intros; assert (H13 := H4 _ H10); elim H13; clear H13; intros xi H13; assert (H14 : In xi l). unfold g in H13; decompose [and] H13; elim (H5 xi); intros; apply H14; split; assumption. elim (pos_Rl_P2 l xi); intros H15 _; elim (H15 H14); intros i H16; elim H16; intros; apply Rle_lt_trans with (Rabs (f0 x - f0 xi) + Rabs (f0 xi - f0 y)). replace (f0 x - f0 y) with (f0 x - f0 xi + (f0 xi - f0 y)); [ apply Rabs_triang | ring ]. rewrite (double_var eps); apply Rplus_lt_compat. assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20; elim H20; clear H20; intros; apply H20; unfold included in H21; apply Rlt_trans with (pos_Rl l' i / 2). apply H21. elim H13; clear H13; intros; assumption. unfold Rdiv; apply Rmult_lt_reg_l with 2. prove_sup0. rewrite Rmult_comm; rewrite Rmult_assoc; rewrite <- Rinv_l_sym. rewrite Rmult_1_r; pattern (pos_Rl l' i) at 1; rewrite <- Rplus_0_r; rewrite double; apply Rplus_lt_compat_l; apply H19. discrR. assert (H19 := H8 i H17); elim H19; clear H19; intros; rewrite <- H18 in H20; elim H20; clear H20; intros; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H20; unfold included in H21; elim H13; intros; assert (H24 := H21 x H22); apply Rle_lt_trans with (Rabs (y - x) + Rabs (x - xi)). replace (y - xi) with (y - x + (x - xi)); [ apply Rabs_triang | ring ]. rewrite (double_var (pos_Rl l' i)); apply Rplus_lt_compat. apply Rlt_le_trans with (D / 2). rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr; apply H12. unfold Rdiv; do 2 rewrite <- (Rmult_comm (/ 2)); apply Rmult_le_compat_l. left; apply Rinv_0_lt_compat; prove_sup0. unfold D; apply MinRlist_P1; elim (pos_Rl_P2 l' (pos_Rl l' i)); intros; apply H26; exists i; split; [ rewrite <- H7; assumption | reflexivity ]. assumption. unfold Rdiv; apply Rmult_lt_0_compat; [ unfold D; apply MinRlist_P2; intros; elim (pos_Rl_P2 l' y); intros; elim (H10 H9); intros; elim H12; intros; rewrite H14; rewrite <- H7 in H13; elim (H8 x H13); intros; apply H15 | apply Rinv_0_lt_compat; prove_sup0 ]. intros; elim (H5 x); intros; elim (H8 H6); intros; set (E := fun zeta:R => 0 < zeta <= M - m /\ (forall z:R, Rabs (z - x) < zeta -> Rabs (f0 z - f0 x) < eps / 2)); assert (H11 : bound E). unfold bound; exists (M - m); unfold is_upper_bound; unfold E; intros; elim H11; clear H11; intros H11 _; elim H11; clear H11; intros _ H11; apply H11. assert (H12 : exists x : R, E x). assert (H13 := H _ H9); unfold continuity_pt in H13; unfold continue_in in H13; unfold limit1_in in H13; unfold limit_in in H13; simpl in H13; unfold R_dist in H13; elim (H13 _ (H1 eps)); intros; elim H12; clear H12; intros; exists (Rmin x0 (M - m)); unfold E; intros; split. split; [ unfold Rmin; case (Rle_dec x0 (M - m)); intro; [ apply H12 | apply Rlt_Rminus; apply Hyp ] | apply Rmin_r ]. intros; case (Req_dec x z); intro. rewrite H16; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply (H1 eps). apply H14; split; [ unfold D_x, no_cond; split; [ trivial | assumption ] | apply Rlt_le_trans with (Rmin x0 (M - m)); [ apply H15 | apply Rmin_l ] ]. destruct (completeness _ H11 H12) as (x0,p). cut (0 < x0 <= M - m). intro; elim H13; clear H13; intros; exists x0; split. assumption. split. intros; cut (exists alp : R, Rabs (z - x) < alp <= x0 /\ E alp). intros; elim H16; intros; elim H17; clear H17; intros; unfold E in H18; elim H18; intros; apply H20; elim H17; intros; assumption. elim (classic (exists alp : R, Rabs (z - x) < alp <= x0 /\ E alp)); intro. assumption. assert (H17 := not_ex_all_not _ (fun alp:R => Rabs (z - x) < alp <= x0 /\ E alp) H16); unfold is_lub in p; elim p; intros; cut (is_upper_bound E (Rabs (z - x))). intro; assert (H21 := H19 _ H20); elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H15 H21)). unfold is_upper_bound; intros; unfold is_upper_bound in H18; assert (H21 := H18 _ H20); case (Rle_dec x1 (Rabs (z - x))); intro. assumption. elim (H17 x1); split. split; [ auto with real | assumption ]. assumption. unfold included, g; intros; elim H15; intros; elim H17; intros; decompose [and] H18; cut (x0 = x2). intro; rewrite H20; apply H22. unfold E in p; eapply is_lub_u. apply p. apply H21. elim H12; intros; unfold E in H13; elim H13; intros H14 _; elim H14; intros H15 _; unfold is_lub in p; elim p; intros; unfold is_upper_bound in H16; unfold is_upper_bound in H17; split. apply Rlt_le_trans with x1; [ assumption | apply (H16 _ H13) ]. apply H17; intros; unfold E in H18; elim H18; intros; elim H19; intros; assumption. Qed.