(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* x | right _ => y end. (*********) Lemma Rmin_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmin r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmin; case (Rle_dec r1 r2); auto. Qed. (*********) Lemma Rmin_case_strong : forall r1 r2 (P:R -> Type), (r1 <= r2 -> P r1) -> (r2 <= r1 -> P r2) -> P (Rmin r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmin; destruct (Rle_dec r1 r2); auto with real. Qed. (*********) Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r. Proof. intros r1 r2 r; unfold Rmin in |- *; case (Rle_dec r1 r2); intros. split. assumption. unfold Rgt in |- *; unfold Rgt in H; exact (Rlt_le_trans r r1 r2 H r0). split. generalize (Rnot_le_lt r1 r2 n); intro; exact (Rgt_trans r1 r2 r H0 H). assumption. Qed. (*********) Lemma Rmin_Rgt_r : forall r1 r2 r, r1 > r /\ r2 > r -> Rmin r1 r2 > r. Proof. intros; unfold Rmin in |- *; case (Rle_dec r1 r2); elim H; clear H; intros; assumption. Qed. (*********) Lemma Rmin_Rgt : forall r1 r2 r, Rmin r1 r2 > r <-> r1 > r /\ r2 > r. Proof. intros; split. exact (Rmin_Rgt_l r1 r2 r). exact (Rmin_Rgt_r r1 r2 r). Qed. (*********) Lemma Rmin_l : forall x y:R, Rmin x y <= x. Proof. intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1; [ right; reflexivity | auto with real ]. Qed. (*********) Lemma Rmin_r : forall x y:R, Rmin x y <= y. Proof. intros; unfold Rmin in |- *; case (Rle_dec x y); intro H1; [ assumption | auto with real ]. Qed. (*********) Lemma Rmin_left : forall x y, x <= y -> Rmin x y = x. Proof. intros; apply Rmin_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rmin_right : forall x y, y <= x -> Rmin x y = y. Proof. intros; apply Rmin_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rle_min_compat_r : forall x y z, x <= y -> Rmin x z <= Rmin y z. Proof. intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma Rle_min_compat_l : forall x y z, x <= y -> Rmin z x <= Rmin z y. Proof. intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma Rmin_comm : forall x y:R, Rmin x y = Rmin y x. Proof. intros; unfold Rmin; case (Rle_dec x y); case (Rle_dec y x); intros; try reflexivity || (apply Rle_antisym; assumption || auto with real). Qed. (*********) Lemma Rmin_stable_in_posreal : forall x y:posreal, 0 < Rmin x y. Proof. intros; apply Rmin_Rgt_r; split; [ apply (cond_pos x) | apply (cond_pos y) ]. Qed. (*********) Lemma Rmin_pos : forall x y:R, 0 < x -> 0 < y -> 0 < Rmin x y. Proof. intros; unfold Rmin in |- *. case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmin_glb : forall x y z:R, z <= x -> z <= y -> z <= Rmin x y. Proof. intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmin_glb_lt : forall x y z:R, z < x -> z < y -> z < Rmin x y. Proof. intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption. Qed. (*******************************) (** * Rmax *) (*******************************) (*********) Definition Rmax (x y:R) : R := match Rle_dec x y with | left _ => y | right _ => x end. (*********) Lemma Rmax_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmax r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto. Qed. (*********) Lemma Rmax_case_strong : forall r1 r2 (P:R -> Type), (r2 <= r1 -> P r1) -> (r1 <= r2 -> P r2) -> P (Rmax r1 r2). Proof. intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto with real. Qed. (*********) Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2. Proof. intros; split. unfold Rmax in |- *; case (Rle_dec r1 r2); intros; auto. intro; unfold Rmax in |- *; case (Rle_dec r1 r2); elim H; clear H; intros; auto. apply (Rle_trans r r1 r2); auto. generalize (Rnot_le_lt r1 r2 n); clear n; intro; unfold Rgt in H0; apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)). Qed. Lemma Rmax_comm : forall x y:R, Rmax x y = Rmax y x. Proof. intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto; intros H1 H2; apply Rle_antisym; auto with real. Qed. (* begin hide *) Notation RmaxSym := Rmax_comm (only parsing). (* end hide *) (*********) Lemma Rmax_l : forall x y:R, x <= Rmax x y. Proof. intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1; [ assumption | auto with real ]. Qed. (*********) Lemma Rmax_r : forall x y:R, y <= Rmax x y. Proof. intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1; [ right; reflexivity | auto with real ]. Qed. (* begin hide *) Notation RmaxLess1 := Rmax_l (only parsing). Notation RmaxLess2 := Rmax_r (only parsing). (* end hide *) (*********) Lemma Rmax_left : forall x y, y <= x -> Rmax x y = x. Proof. intros; apply Rmax_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rmax_right : forall x y, x <= y -> Rmax x y = y. Proof. intros; apply Rmax_case_strong; auto using Rle_antisym. Qed. (*********) Lemma Rle_max_compat_r : forall x y z, x <= y -> Rmax x z <= Rmax y z. Proof. intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma Rle_max_compat_l : forall x y z, x <= y -> Rmax z x <= Rmax z y. Proof. intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl. Qed. (*********) Lemma RmaxRmult : forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q. Proof. intros p q r H; unfold Rmax in |- *. case (Rle_dec p q); case (Rle_dec (r * p) (r * q)); auto; intros H1 H2; auto. case H; intros E1. case H1; auto with real. rewrite <- E1; repeat rewrite Rmult_0_l; auto. case H; intros E1. case H2; auto with real. apply Rmult_le_reg_l with (r := r); auto. rewrite <- E1; repeat rewrite Rmult_0_l; auto. Qed. (*********) Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0. Proof. intros; unfold Rmax in |- *; case (Rle_dec x y); intro; [ apply (cond_neg y) | apply (cond_neg x) ]. Qed. (*********) Lemma Rmax_lub : forall x y z:R, x <= z -> y <= z -> Rmax x y <= z. Proof. intros; unfold Rmax; case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmax_lub_lt : forall x y z:R, x < z -> y < z -> Rmax x y < z. Proof. intros; unfold Rmax; case (Rle_dec x y); intro; assumption. Qed. (*********) Lemma Rmax_neg : forall x y:R, x < 0 -> y < 0 -> Rmax x y < 0. Proof. intros; unfold Rmax in |- *. case (Rle_dec x y); intro; assumption. Qed. (*******************************) (** * Rabsolu *) (*******************************) (*********) Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}. Proof. intro; generalize (Rle_dec 0 r); intro X; elim X; intro; clear X. right; apply (Rle_ge 0 r a). left; fold (0 > r) in |- *; apply (Rnot_le_lt 0 r b). Qed. (*********) Definition Rabs r : R := match Rcase_abs r with | left _ => - r | right _ => r end. (*********) Lemma Rabs_R0 : Rabs 0 = 0. Proof. unfold Rabs in |- *; case (Rcase_abs 0); auto; intro. generalize (Rlt_irrefl 0); intro; exfalso; auto. Qed. Lemma Rabs_R1 : Rabs 1 = 1. Proof. unfold Rabs in |- *; case (Rcase_abs 1); auto with real. intros H; absurd (1 < 0); auto with real. Qed. (*********) Lemma Rabs_no_R0 : forall r, r <> 0 -> Rabs r <> 0. Proof. intros; unfold Rabs in |- *; case (Rcase_abs r); intro; auto. apply Ropp_neq_0_compat; auto. Qed. (*********) Lemma Rabs_left : forall r, r < 0 -> Rabs r = - r. Proof. intros; unfold Rabs in |- *; case (Rcase_abs r); trivial; intro; absurd (r >= 0). exact (Rlt_not_ge r 0 H). assumption. Qed. (*********) Lemma Rabs_right : forall r, r >= 0 -> Rabs r = r. Proof. intros; unfold Rabs in |- *; case (Rcase_abs r); intro. absurd (r >= 0). exact (Rlt_not_ge r 0 r0). assumption. trivial. Qed. Lemma Rabs_left1 : forall a:R, a <= 0 -> Rabs a = - a. Proof. intros a H; case H; intros H1. apply Rabs_left; auto. rewrite H1; simpl in |- *; rewrite Rabs_right; auto with real. Qed. (*********) Lemma Rabs_pos : forall x:R, 0 <= Rabs x. Proof. intros; unfold Rabs in |- *; case (Rcase_abs x); intro. generalize (Ropp_lt_gt_contravar x 0 r); intro; unfold Rgt in H; rewrite Ropp_0 in H; unfold Rle in |- *; left; assumption. apply Rge_le; assumption. Qed. Lemma Rle_abs : forall x:R, x <= Rabs x. Proof. intro; unfold Rabs in |- *; case (Rcase_abs x); intros; fourier. Qed. Definition RRle_abs := Rle_abs. (*********) Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x. Proof. intros; unfold Rabs in |- *; case (Rcase_abs x); intro; [ generalize (Rgt_not_le 0 x r); intro; exfalso; auto | trivial ]. Qed. (*********) Lemma Rabs_Rabsolu : forall x:R, Rabs (Rabs x) = Rabs x. Proof. intro; apply (Rabs_pos_eq (Rabs x) (Rabs_pos x)). Qed. (*********) Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x. Proof. intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro; auto. exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *; case (Rcase_abs x); intros; auto. clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0); rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x); trivial. Qed. (*********) Lemma Rabs_minus_sym : forall x y:R, Rabs (x - y) = Rabs (y - x). Proof. intros; unfold Rabs in |- *; case (Rcase_abs (x - y)); case (Rcase_abs (y - x)); intros. generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros; generalize (Rlt_asym x y H); intro; exfalso; auto. rewrite (Ropp_minus_distr x y); trivial. rewrite (Ropp_minus_distr y x); trivial. unfold Rge in r, r0; elim r; elim r0; intros; clear r r0. generalize (Ropp_lt_gt_0_contravar (x - y) H); rewrite (Ropp_minus_distr x y); intro; unfold Rgt in H0; generalize (Rlt_asym 0 (y - x) H0); intro; exfalso; auto. rewrite (Rminus_diag_uniq x y H); trivial. rewrite (Rminus_diag_uniq y x H0); trivial. rewrite (Rminus_diag_uniq y x H0); trivial. Qed. (*********) Lemma Rabs_mult : forall x y:R, Rabs (x * y) = Rabs x * Rabs y. Proof. intros; unfold Rabs in |- *; case (Rcase_abs (x * y)); case (Rcase_abs x); case (Rcase_abs y); intros; auto. generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro; rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1); intro; unfold Rgt in H; exfalso; rewrite (Rmult_comm y x) in H; auto. rewrite (Ropp_mult_distr_l_reverse x y); trivial. rewrite (Rmult_comm x (- y)); rewrite (Ropp_mult_distr_l_reverse y x); rewrite (Rmult_comm x y); trivial. unfold Rge in r, r0; elim r; elim r0; clear r r0; intros; unfold Rgt in H, H0. generalize (Rmult_lt_compat_l x 0 y H H0); intro; rewrite (Rmult_0_r x) in H1; generalize (Rlt_asym (x * y) 0 r1); intro; exfalso; auto. rewrite H in r1; rewrite (Rmult_0_l y) in r1; generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite (Rmult_opp_opp x y); trivial. unfold Rge in r, r1; elim r; elim r1; clear r r1; intros; unfold Rgt in H0, H. generalize (Rmult_lt_compat_l y x 0 H0 r0); intro; rewrite (Rmult_0_r y) in H1; rewrite (Rmult_comm y x) in H1; generalize (Rlt_asym (x * y) 0 H1); intro; exfalso; auto. generalize (Rlt_dichotomy_converse x 0 (or_introl (x > 0) r0)); generalize (Rlt_dichotomy_converse y 0 (or_intror (y < 0) H0)); intros; generalize (Rmult_integral x y H); intro; elim H3; intro; exfalso; auto. rewrite H0 in H; rewrite (Rmult_0_r x) in H; unfold Rgt in H; generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite H0; rewrite (Rmult_0_r x); rewrite (Rmult_0_r (- x)); trivial. unfold Rge in r0, r1; elim r0; elim r1; clear r0 r1; intros; unfold Rgt in H0, H. generalize (Rmult_lt_compat_l x y 0 H0 r); intro; rewrite (Rmult_0_r x) in H1; generalize (Rlt_asym (x * y) 0 H1); intro; exfalso; auto. generalize (Rlt_dichotomy_converse y 0 (or_introl (y > 0) r)); generalize (Rlt_dichotomy_converse 0 x (or_introl (0 > x) H0)); intros; generalize (Rmult_integral x y H); intro; elim H3; intro; exfalso; auto. rewrite H0 in H; rewrite (Rmult_0_l y) in H; unfold Rgt in H; generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite H0; rewrite (Rmult_0_l y); rewrite (Rmult_0_l (- y)); trivial. Qed. (*********) Lemma Rabs_Rinv : forall r, r <> 0 -> Rabs (/ r) = / Rabs r. Proof. intro; unfold Rabs in |- *; case (Rcase_abs r); case (Rcase_abs (/ r)); auto; intros. apply Ropp_inv_permute; auto. generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros. unfold Rgt in H1; generalize (Rlt_asym 0 (/ r) H1); intro; exfalso; auto. generalize (Rlt_dichotomy_converse (/ r) 0 (or_introl (/ r > 0) H0)); intro; exfalso; auto. unfold Rge in r1; elim r1; clear r1; intro. unfold Rgt in H0; generalize (Rlt_asym 0 (/ r) (Rinv_0_lt_compat r H0)); intro; exfalso; auto. exfalso; auto. Qed. Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x. Proof. intro; cut (- x = -1 * x). intros; rewrite H. rewrite Rabs_mult. cut (Rabs (-1) = 1). intros; rewrite H0. ring. unfold Rabs in |- *; case (Rcase_abs (-1)). intro; ring. intro H0; generalize (Rge_le (-1) 0 H0); intros. generalize (Ropp_le_ge_contravar 0 (-1) H1). rewrite Ropp_involutive; rewrite Ropp_0. intro; generalize (Rgt_not_le 1 0 Rlt_0_1); intro; generalize (Rge_le 0 1 H2); intro; exfalso; auto. ring. Qed. (*********) Lemma Rabs_triang : forall a b:R, Rabs (a + b) <= Rabs a + Rabs b. Proof. intros a b; unfold Rabs in |- *; case (Rcase_abs (a + b)); case (Rcase_abs a); case (Rcase_abs b); intros. apply (Req_le (- (a + b)) (- a + - b)); rewrite (Ropp_plus_distr a b); reflexivity. (**) rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b); unfold Rle in |- *; unfold Rge in r; elim r; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro; elim (Rplus_ne (- b)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H). right; rewrite H; apply Ropp_0. (**) rewrite (Ropp_plus_distr a b); rewrite (Rplus_comm (- a) (- b)); rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a); unfold Rle in |- *; unfold Rge in r0; elim r0; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro; elim (Rplus_ne (- a)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H). right; rewrite H; apply Ropp_0. (**) exfalso; generalize (Rplus_ge_compat_l a b 0 r); intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rge_trans (a + b) a 0 H r0); intro; clear H; unfold Rge in H0; elim H0; intro; clear H0. unfold Rgt in H; generalize (Rlt_asym (a + b) 0 r1); intro; auto. absurd (a + b = 0); auto. apply (Rlt_dichotomy_converse (a + b) 0); left; assumption. (**) exfalso; generalize (Rplus_lt_compat_l a b 0 r); intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (a + b) a 0 H r0); intro; clear H; unfold Rge in r1; elim r1; clear r1; intro. unfold Rgt in H; generalize (Rlt_trans (a + b) 0 (a + b) H0 H); intro; apply (Rlt_irrefl (a + b)); assumption. rewrite H in H0; apply (Rlt_irrefl 0); assumption. (**) rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b); apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a)); unfold Rminus in |- *; rewrite (Ropp_involutive a); generalize (Rplus_lt_compat_l a a 0 r0); clear r r1; intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (a + a) a 0 H r0); intro; apply (Rlt_le (a + a) 0 H0). (**) apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b)); unfold Rminus in |- *; rewrite (Ropp_involutive b); generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1; intro; elim (Rplus_ne b); intros v w; rewrite v in H; clear v w; generalize (Rlt_trans (b + b) b 0 H r); intro; apply (Rlt_le (b + b) 0 H0). (**) unfold Rle in |- *; right; reflexivity. Qed. (*********) Lemma Rabs_triang_inv : forall a b:R, Rabs a - Rabs b <= Rabs (a - b). Proof. intros; apply (Rplus_le_reg_l (Rabs b) (Rabs a - Rabs b) (Rabs (a - b))); unfold Rminus in |- *; rewrite <- (Rplus_assoc (Rabs b) (Rabs a) (- Rabs b)); rewrite (Rplus_comm (Rabs b) (Rabs a)); rewrite (Rplus_assoc (Rabs a) (Rabs b) (- Rabs b)); rewrite (Rplus_opp_r (Rabs b)); rewrite (proj1 (Rplus_ne (Rabs a))); replace (Rabs a) with (Rabs (a + 0)). rewrite <- (Rplus_opp_r b); rewrite <- (Rplus_assoc a b (- b)); rewrite (Rplus_comm a b); rewrite (Rplus_assoc b a (- b)). exact (Rabs_triang b (a + - b)). rewrite (proj1 (Rplus_ne a)); trivial. Qed. (* ||a|-|b||<=|a-b| *) Lemma Rabs_triang_inv2 : forall a b:R, Rabs (Rabs a - Rabs b) <= Rabs (a - b). Proof. cut (forall a b:R, Rabs b <= Rabs a -> Rabs (Rabs a - Rabs b) <= Rabs (a - b)). intros; destruct (Rtotal_order (Rabs a) (Rabs b)) as [Hlt| [Heq| Hgt]]. rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b)); do 2 rewrite Ropp_minus_distr. apply H; left; assumption. rewrite Heq; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos. apply H; left; assumption. intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b). apply Rabs_triang_inv. rewrite (Rabs_right (Rabs a - Rabs b)); [ reflexivity | apply Rle_ge; apply Rplus_le_reg_l with (Rabs b); rewrite Rplus_0_r; replace (Rabs b + (Rabs a - Rabs b)) with (Rabs a); [ assumption | ring ] ]. Qed. (*********) Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a. Proof. unfold Rabs in |- *; intros; case (Rcase_abs x); intro. generalize (Ropp_lt_gt_contravar (- a) x H0); unfold Rgt in |- *; rewrite Ropp_involutive; intro; assumption. assumption. Qed. (*********) Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x. Proof. unfold Rabs in |- *; intro x; case (Rcase_abs x); intros. generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt in |- *; intro; generalize (Rlt_trans 0 (- x) a H0 H); intro; split. apply (Rlt_trans x 0 a r H1). generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x); unfold Rgt in |- *; trivial. fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro; generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a) in |- *; generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *; intro; split; assumption. Qed. Lemma RmaxAbs : forall (p q:R) r, p <= q -> q <= r -> Rabs q <= Rmax (Rabs p) (Rabs r). Proof. intros p q r H' H'0; case (Rle_or_lt 0 p); intros H'1. repeat rewrite Rabs_right; auto with real. apply Rle_trans with r; auto with real. apply RmaxLess2; auto. apply Rge_trans with p; auto with real; apply Rge_trans with q; auto with real. apply Rge_trans with p; auto with real. rewrite (Rabs_left p); auto. case (Rle_or_lt 0 q); intros H'2. repeat rewrite Rabs_right; auto with real. apply Rle_trans with r; auto. apply RmaxLess2; auto. apply Rge_trans with q; auto with real. rewrite (Rabs_left q); auto. case (Rle_or_lt 0 r); intros H'3. repeat rewrite Rabs_right; auto with real. apply Rle_trans with (- p); auto with real. apply RmaxLess1; auto. rewrite (Rabs_left r); auto. apply Rle_trans with (- p); auto with real. apply RmaxLess1; auto. Qed. Lemma Rabs_Zabs : forall z:Z, Rabs (IZR z) = IZR (Zabs z). Proof. intros z; case z; simpl in |- *; auto with real. apply Rabs_right; auto with real. intros p0; apply Rabs_right; auto with real zarith. intros p0; rewrite Rabs_Ropp. apply Rabs_right; auto with real zarith. Qed. Lemma abs_IZR : forall z, IZR (Zabs z) = Rabs (IZR z). Proof. intros. now rewrite Rabs_Zabs. Qed.