(* -*- coq-prog-name: "~/research/coq/trunk/bin/coqtop.byte"; coq-prog-args: ("-emacs-U"); compile-command: "make -C ../.. TIME='time'" -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* tac H end. (** Try to apply [JMeq_eq] to get back a regular equality when the two types are equal. *) Ltac simpl_one_JMeq := on_JMeq ltac:(fun H => apply JMeq_eq in H). (** Repeat it for every possible hypothesis. *) Ltac simpl_JMeq := repeat simpl_one_JMeq. (** Just simplify an h.eq. without clearing it. *) Ltac simpl_one_dep_JMeq := on_JMeq ltac:(fun H => let H' := fresh "H" in assert (H' := JMeq_eq H)). Require Import Eqdep. (** Simplify dependent equality using sigmas to equality of the second projections if possible. Uses UIP. *) Ltac simpl_existT := match goal with [ H : existT _ ?x _ = existT _ ?x _ |- _ ] => let Hi := fresh H in assert(Hi:=inj_pairT2 _ _ _ _ _ H) ; clear H end. Ltac simpl_existTs := repeat simpl_existT. (** Tries to eliminate a call to [eq_rect] (the substitution principle) by any means available. *) Ltac elim_eq_rect := match goal with | [ |- ?t ] => match t with | context [ @eq_rect _ _ _ _ _ ?p ] => let P := fresh "P" in set (P := p); simpl in P ; ((case P ; clear P) || (clearbody P; rewrite (UIP_refl _ _ P); clear P)) | context [ @eq_rect _ _ _ _ _ ?p _ ] => let P := fresh "P" in set (P := p); simpl in P ; ((case P ; clear P) || (clearbody P; rewrite (UIP_refl _ _ P); clear P)) end end. (** Rewrite using uniqueness of indentity proofs [H = refl_equal X]. *) Ltac simpl_uip := match goal with [ H : ?X = ?X |- _ ] => rewrite (UIP_refl _ _ H) in *; clear H end. (** Simplify equalities appearing in the context and goal. *) Ltac simpl_eq := simpl ; unfold eq_rec_r, eq_rec ; repeat (elim_eq_rect ; simpl) ; repeat (simpl_uip ; simpl). (** Try to abstract a proof of equality, if no proof of the same equality is present in the context. *) Ltac abstract_eq_hyp H' p := let ty := type of p in let tyred := eval simpl in ty in match tyred with ?X = ?Y => match goal with | [ H : X = Y |- _ ] => fail 1 | _ => set (H':=p) ; try (change p with H') ; clearbody H' ; simpl in H' end end. (** Apply the tactic tac to proofs of equality appearing as coercion arguments. Just redefine this tactic (using [Ltac on_coerce_proof tac ::=]) to handle custom coercion operators. *) Ltac on_coerce_proof tac T := match T with | context [ eq_rect _ _ _ _ ?p ] => tac p end. Ltac on_coerce_proof_gl tac := match goal with [ |- ?T ] => on_coerce_proof tac T end. (** Abstract proofs of equalities of coercions. *) Ltac abstract_eq_proof := on_coerce_proof_gl ltac:(fun p => let H := fresh "eqH" in abstract_eq_hyp H p). Ltac abstract_eq_proofs := repeat abstract_eq_proof. (** Factorize proofs, by using proof irrelevance so that two proofs of the same equality in the goal become convertible. *) Ltac pi_eq_proof_hyp p := let ty := type of p in let tyred := eval simpl in ty in match tyred with ?X = ?Y => match goal with | [ H : X = Y |- _ ] => match p with | H => fail 2 | _ => rewrite (proof_irrelevance (X = Y) p H) end | _ => fail " No hypothesis with same type " end end. (** Factorize proofs of equality appearing as coercion arguments. *) Ltac pi_eq_proof := on_coerce_proof_gl pi_eq_proof_hyp. Ltac pi_eq_proofs := repeat pi_eq_proof. (** The two preceding tactics in sequence. *) Ltac clear_eq_proofs := abstract_eq_proofs ; pi_eq_proofs. Hint Rewrite <- eq_rect_eq : refl_id. (** The refl_id database should be populated with lemmas of the form [coerce_* t (refl_equal _) = t]. *) Ltac rewrite_refl_id := autorewrite with refl_id. (** Clear the context and goal of equality proofs. *) Ltac clear_eq_ctx := rewrite_refl_id ; clear_eq_proofs. (** Reapeated elimination of [eq_rect] applications. Abstracting equalities makes it run much faster than an naive implementation. *) Ltac simpl_eqs := repeat (elim_eq_rect ; simpl ; clear_eq_ctx). (** Clear unused reflexivity proofs. *) Ltac clear_refl_eq := match goal with [ H : ?X = ?X |- _ ] => clear H end. Ltac clear_refl_eqs := repeat clear_refl_eq. (** Clear unused equality proofs. *) Ltac clear_eq := match goal with [ H : _ = _ |- _ ] => clear H end. Ltac clear_eqs := repeat clear_eq. (** Combine all the tactics to simplify goals containing coercions. *) Ltac simplify_eqs := simpl ; simpl_eqs ; clear_eq_ctx ; clear_refl_eqs ; try subst ; simpl ; repeat simpl_uip ; rewrite_refl_id. (** A tactic that tries to remove trivial equality guards in induction hypotheses coming from [dependent induction]/[generalize_eqs] invocations. *) Ltac simpl_IH_eq H := match type of H with | @JMeq _ ?x _ _ -> _ => refine_hyp (H (JMeq_refl x)) | _ -> @JMeq _ ?x _ _ -> _ => refine_hyp (H _ (JMeq_refl x)) | _ -> _ -> @JMeq _ ?x _ _ -> _ => refine_hyp (H _ _ (JMeq_refl x)) | _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ => refine_hyp (H _ _ _ (JMeq_refl x)) | _ -> _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ => refine_hyp (H _ _ _ _ (JMeq_refl x)) | _ -> _ -> _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ => refine_hyp (H _ _ _ _ _ (JMeq_refl x)) | ?x = _ -> _ => refine_hyp (H (refl_equal x)) | _ -> ?x = _ -> _ => refine_hyp (H _ (refl_equal x)) | _ -> _ -> ?x = _ -> _ => refine_hyp (H _ _ (refl_equal x)) | _ -> _ -> _ -> ?x = _ -> _ => refine_hyp (H _ _ _ (refl_equal x)) | _ -> _ -> _ -> _ -> ?x = _ -> _ => refine_hyp (H _ _ _ _ (refl_equal x)) | _ -> _ -> _ -> _ -> _ -> ?x = _ -> _ => refine_hyp (H _ _ _ _ _ (refl_equal x)) end. Ltac simpl_IH_eqs H := repeat simpl_IH_eq H. Ltac do_simpl_IHs_eqs := match goal with | [ H : context [ @JMeq _ _ _ _ -> _ ] |- _ ] => progress (simpl_IH_eqs H) | [ H : context [ _ = _ -> _ ] |- _ ] => progress (simpl_IH_eqs H) end. Ltac simpl_IHs_eqs := repeat do_simpl_IHs_eqs. (** We split substitution tactics in the two directions depending on which names we want to keep corresponding to the generalization performed by the [generalize_eqs] tactic. *) Ltac subst_left_no_fail := repeat (match goal with [ H : ?X = ?Y |- _ ] => subst X end). Ltac subst_right_no_fail := repeat (match goal with [ H : ?X = ?Y |- _ ] => subst Y end). Ltac inject_left H := progress (inversion H ; subst_left_no_fail ; clear_dups) ; clear H. Ltac inject_right H := progress (inversion H ; subst_right_no_fail ; clear_dups) ; clear H. Ltac autoinjections_left := repeat autoinjection ltac:inject_left. Ltac autoinjections_right := repeat autoinjection ltac:inject_right. Ltac simpl_depind := subst_no_fail ; autoinjections ; try discriminates ; simpl_JMeq ; simpl_existTs ; simpl_IHs_eqs. Ltac simpl_depind_l := subst_left_no_fail ; autoinjections_left ; try discriminates ; simpl_JMeq ; simpl_existTs ; simpl_IHs_eqs. Ltac simpl_depind_r := subst_right_no_fail ; autoinjections_right ; try discriminates ; simpl_JMeq ; simpl_existTs ; simpl_IHs_eqs. (** Support for the [Equations] command. These tactics implement the necessary machinery to solve goals produced by the [Equations] command relative to dependent pattern-matching. It is completely inspired from the "Eliminating Dependent Pattern-Matching" paper by Goguen, McBride and McKinna. *) (** The NoConfusionPackage class provides a method for making progress on proving a property [P] implied by an equality on an inductive type [I]. The type of [noConfusion] for a given [P] should be of the form [ Π Δ, (x y : I Δ) (x = y) -> NoConfusion P x y ], where [NoConfusion P x y] for constructor-headed [x] and [y] will give a formula ending in [P]. This gives a general method for simplifying by discrimination or injectivity of constructors. Some actual instances are defined later in the file using the more primitive [discriminate] and [injection] tactics on which we can always fall back. *) Class NoConfusionPackage (I : Type) := { NoConfusion : Π P : Prop, Type ; noConfusion : Π P, NoConfusion P }. (** The [DependentEliminationPackage] provides the default dependent elimination principle to be used by the [equations] resolver. It is especially useful to register the dependent elimination principles for things in [Prop] which are not automatically generated. *) Class DependentEliminationPackage (A : Type) := { elim_type : Type ; elim : elim_type }. (** A higher-order tactic to apply a registered eliminator. *) Ltac elim_tac tac p := let ty := type of p in let eliminator := eval simpl in (elim (A:=ty)) in tac p eliminator. (** Specialization to do case analysis or induction. Note: the [equations] tactic tries [case] before [elim_case]: there is no need to register generated induction principles. *) Ltac elim_case p := elim_tac ltac:(fun p el => destruct p using el) p. Ltac elim_ind p := elim_tac ltac:(fun p el => induction p using el) p. (** The [BelowPackage] class provides the definition of a [Below] predicate for some datatype, allowing to talk about course-of-value recursion on it. *) Class BelowPackage (A : Type) := { Below : A -> Type ; below : Π (a : A), Below a }. (** The [Recursor] class defines a recursor on a type, based on some definition of [Below]. *) Class Recursor (A : Type) (BP : BelowPackage A) := { rec_type : A -> Type ; rec : Π (a : A), rec_type a }. (** Lemmas used by the simplifier, mainly rephrasings of [eq_rect], [eq_ind]. *) Lemma solution_left : Π A (B : A -> Type) (t : A), B t -> (Π x, x = t -> B x). Proof. intros; subst. apply X. Defined. Lemma solution_right : Π A (B : A -> Type) (t : A), B t -> (Π x, t = x -> B x). Proof. intros; subst; apply X. Defined. Lemma deletion : Π A B (t : A), B -> (t = t -> B). Proof. intros; assumption. Defined. Lemma simplification_heq : Π A B (x y : A), (x = y -> B) -> (JMeq x y -> B). Proof. intros; apply X; apply (JMeq_eq H). Defined. Lemma simplification_existT2 : Π A (P : A -> Type) B (p : A) (x y : P p), (x = y -> B) -> (existT P p x = existT P p y -> B). Proof. intros. apply X. apply inj_pair2. exact H. Defined. Lemma simplification_existT1 : Π A (P : A -> Type) B (p q : A) (x : P p) (y : P q), (p = q -> existT P p x = existT P q y -> B) -> (existT P p x = existT P q y -> B). Proof. intros. injection H. intros ; auto. Defined. Lemma simplification_K : Π A (x : A) (B : x = x -> Type), B (refl_equal x) -> (Π p : x = x, B p). Proof. intros. rewrite (UIP_refl A). assumption. Defined. (** This hint database and the following tactic can be used with [autosimpl] to unfold everything to [eq_rect]s. *) Hint Unfold solution_left solution_right deletion simplification_heq simplification_existT1 simplification_existT2 eq_rect_r eq_rec eq_ind : equations. (** Simply unfold as much as possible. *) Ltac unfold_equations := repeat progress autosimpl with equations. (** The tactic [simplify_equations] is to be used when a program generated using [Equations] is in the goal. It simplifies it as much as possible, possibly using [K] if needed. *) Ltac simplify_equations := repeat (unfold_equations ; simplify_eqs). (** We will use the [block_induction] definition to separate the goal from the equalities generated by the tactic. *) Definition block_dep_elim {A : Type} (a : A) := a. (** Using these we can make a simplifier that will perform the unification steps needed to put the goal in normalised form (provided there are only constructor forms). Compare with the lemma 16 of the paper. We don't have a [noCycle] procedure yet. *) Ltac simplify_one_dep_elim_term c := match c with | @JMeq _ _ _ _ -> _ => refine (simplification_heq _ _ _ _ _) | ?t = ?t -> _ => intros _ || refine (simplification_K _ t _ _) | eq (existT _ _ _) (existT _ _ _) -> _ => refine (simplification_existT2 _ _ _ _ _ _ _) || refine (simplification_existT1 _ _ _ _ _ _ _ _) | ?x = ?y -> _ => (* variables case *) (let hyp := fresh in intros hyp ; move hyp before x ; generalize dependent x ; refine (solution_left _ _ _ _) ; intros until 0) || (let hyp := fresh in intros hyp ; move hyp before y ; generalize dependent y ; refine (solution_right _ _ _ _) ; intros until 0) | @eq ?A ?t ?u -> ?P => apply (noConfusion (I:=A) P) | ?f ?x = ?g ?y -> _ => let H := fresh in progress (intros H ; injection H ; clear H) | ?t = ?u -> _ => let hyp := fresh in intros hyp ; elimtype False ; discriminate | ?x = ?y -> _ => let hyp := fresh in intros hyp ; (try (clear hyp ; (* If non dependent, don't clear it! *) fail 1)) ; case hyp ; clear hyp | block_dep_elim ?T => fail 1 (* Do not put any part of the rhs in the hyps *) | _ => intro end. Ltac simplify_one_dep_elim := match goal with | [ |- ?gl ] => simplify_one_dep_elim_term gl end. (** Repeat until no progress is possible. By construction, it should leave the goal with no remaining equalities generated by the [generalize_eqs] tactic. *) Ltac simplify_dep_elim := repeat simplify_one_dep_elim. (** To dependent elimination on some hyp. *) Ltac depelim id := generalize_eqs id ; destruct id ; simplify_dep_elim. (** Do dependent elimination of the last hypothesis, but not simplifying yet (used internally). *) Ltac destruct_last := on_last_hyp ltac:(fun id => simpl in id ; generalize_eqs id ; destruct id). (** The rest is support tactics for the [Equations] command. *) (** Notation for inaccessible patterns. *) Definition inaccessible_pattern {A : Type} (t : A) := t. Notation "?( t )" := (inaccessible_pattern t). (** To handle sections, we need to separate the context in two parts: variables introduced by the section and the rest. We introduce a dummy variable between them to indicate that. *) CoInductive end_of_section := the_end_of_the_section. Ltac set_eos := let eos := fresh "eos" in assert (eos:=the_end_of_the_section). (** We have a specialized [reverse_local] tactic to reverse the goal until the begining of the section variables *) Ltac reverse_local := match goal with | [ H : ?T |- _ ] => match T with | end_of_section => idtac | _ => revert H ; reverse_local end | _ => idtac end. (** Do as much as possible to apply a method, trying to get the arguments right. !!Unsafe!! We use [auto] for the [_nocomp] variant of [Equations], in which case some non-dependent arguments of the method can remain after [apply]. *) Ltac simpl_intros m := ((apply m || refine m) ; auto) || (intro ; simpl_intros m). (** Hopefully the first branch suffices. *) Ltac try_intros m := solve [ intros ; unfold block_dep_elim ; refine m || apply m ] || solve [ unfold block_dep_elim ; simpl_intros m ]. (** To solve a goal by inversion on a particular target. *) Ltac solve_empty target := do_nat target intro ; elimtype False ; destruct_last ; simplify_dep_elim. Ltac simplify_method tac := repeat (tac || simplify_one_dep_elim) ; reverse_local. (** Solving a method call: we can solve it by splitting on an empty family member or we must refine the goal until the body can be applied. *) Ltac solve_method rec := match goal with | [ H := ?body : nat |- _ ] => subst H ; clear ; abstract (simplify_method idtac ; solve_empty body) | [ H := [ ?body ] : ?T |- _ ] => clear H ; simplify_method ltac:(exact body) ; rec ; try_intros (body:T) end. (** Impossible cases, by splitting on a given target. *) Ltac solve_split := match goal with | [ |- let split := ?x : nat in _ ] => clear ; abstract (intros _ ; solve_empty x) end. (** If defining recursive functions, the prototypes come first. *) Ltac intro_prototypes := match goal with | [ |- Π x : _, _ ] => intro ; intro_prototypes | _ => idtac end. Ltac introduce p := first [ match p with _ => idtac end (* Already there *) | intros until p | intros ]. Ltac do_case p := introduce p ; (destruct p || elim_case p || (case p ; clear p)). Ltac do_ind p := introduce p ; (induction p || elim_ind p). Ltac dep_elimify := match goal with [ |- ?T ] => change (block_dep_elim T) end. Ltac un_dep_elimify := unfold block_dep_elim in *. Ltac case_last := dep_elimify ; on_last_hyp ltac:(fun p => let ty := type of p in match ty with | ?x = ?x => revert p ; refine (simplification_K _ x _ _) | ?x = ?y => revert p | _ => simpl in p ; generalize_eqs p ; do_case p end). Ltac nonrec_equations := solve [solve_equations (case_last) (solve_method idtac)] || solve [ solve_split ] || fail "Unnexpected equations goal". Ltac recursive_equations := solve [solve_equations (case_last) (solve_method ltac:intro)] || solve [ solve_split ] || fail "Unnexpected recursive equations goal". (** The [equations] tactic is the toplevel tactic for solving goals generated by [Equations]. *) Ltac equations := set_eos ; match goal with | [ |- Π x : _, _ ] => intro ; recursive_equations | _ => nonrec_equations end. (** The following tactics allow to do induction on an already instantiated inductive predicate by first generalizing it and adding the proper equalities to the context, in a maner similar to the BasicElim tactic of "Elimination with a motive" by Conor McBride. *) (** The [do_depind] higher-order tactic takes an induction tactic as argument and an hypothesis and starts a dependent induction using this tactic. *) Ltac do_depind tac H := (try intros until H) ; dep_elimify ; generalize_eqs_vars H ; tac H ; simplify_dep_elim ; un_dep_elimify. (** A variant where generalized variables should be given by the user. *) Ltac do_depind' tac H := (try intros until H) ; dep_elimify ; generalize_eqs H ; tac H ; simplify_dep_elim ; un_dep_elimify. (** Calls [destruct] on the generalized hypothesis, results should be similar to inversion. By default, we don't try to generalize the hyp by its variable indices. *) Tactic Notation "dependent" "destruction" ident(H) := do_depind' ltac:(fun hyp => do_case hyp) H. Tactic Notation "dependent" "destruction" ident(H) "using" constr(c) := do_depind' ltac:(fun hyp => destruct hyp using c) H. (** This tactic also generalizes the goal by the given variables before the induction. *) Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) := do_depind' ltac:(fun hyp => revert l ; do_case hyp) H. Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) := do_depind' ltac:(fun hyp => revert l ; destruct hyp using c) H. (** Then we have wrappers for usual calls to induction. One can customize the induction tactic by writting another wrapper calling do_depind. We suppose the hyp has to be generalized before calling [induction]. *) Tactic Notation "dependent" "induction" ident(H) := do_depind ltac:(fun hyp => do_ind hyp) H. Tactic Notation "dependent" "induction" ident(H) "using" constr(c) := do_depind ltac:(fun hyp => induction hyp using c) H. (** This tactic also generalizes the goal by the given variables before the induction. *) Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) := do_depind' ltac:(fun hyp => generalize l ; clear l ; do_ind hyp) H. Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) := do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp using c) H. Ltac simplify_IH_hyps := repeat match goal with | [ hyp : _ |- _ ] => specialize_hypothesis hyp end.