(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Q. Local Notation "[ x ]" := (to_Q x). Definition eq x y := [x] == [y]. Definition lt x y := [x] < [y]. Definition le x y := [x] <= [y]. Parameter of_Q : Q -> t. Parameter spec_of_Q: forall x, to_Q (of_Q x) == x. Parameter red : t -> t. Parameter compare : t -> t -> comparison. Parameter eq_bool : t -> t -> bool. Parameter max : t -> t -> t. Parameter min : t -> t -> t. Parameter zero : t. Parameter one : t. Parameter minus_one : t. Parameter add : t -> t -> t. Parameter sub : t -> t -> t. Parameter opp : t -> t. Parameter mul : t -> t -> t. Parameter square : t -> t. Parameter inv : t -> t. Parameter div : t -> t -> t. Parameter power : t -> Z -> t. Parameter spec_red : forall x, [red x] == [x]. Parameter strong_spec_red : forall x, [red x] = Qred [x]. Parameter spec_compare : forall x y, compare x y = ([x] ?= [y]). Parameter spec_eq_bool : forall x y, eq_bool x y = Qeq_bool [x] [y]. Parameter spec_max : forall x y, [max x y] == Qmax [x] [y]. Parameter spec_min : forall x y, [min x y] == Qmin [x] [y]. Parameter spec_0: [zero] == 0. Parameter spec_1: [one] == 1. Parameter spec_m1: [minus_one] == -(1). Parameter spec_add: forall x y, [add x y] == [x] + [y]. Parameter spec_sub: forall x y, [sub x y] == [x] - [y]. Parameter spec_opp: forall x, [opp x] == - [x]. Parameter spec_mul: forall x y, [mul x y] == [x] * [y]. Parameter spec_square: forall x, [square x] == [x] ^ 2. Parameter spec_inv : forall x, [inv x] == / [x]. Parameter spec_div: forall x y, [div x y] == [x] / [y]. Parameter spec_power: forall x z, [power x z] == [x] ^ z. End QType. (** NB: several of the above functions come with [..._norm] variants that expect reduced arguments and return reduced results. *) (** TODO : also speak of specifications via Qcanon ... *) Module Type QType_Notation (Import Q : QType). Notation "[ x ]" := (to_Q x). Infix "==" := eq (at level 70). Notation "x != y" := (~x==y) (at level 70). Infix "<=" := le. Infix "<" := lt. Notation "0" := zero. Notation "1" := one. Infix "+" := add. Infix "-" := sub. Infix "*" := mul. Notation "- x" := (opp x). Infix "/" := div. Notation "/ x" := (inv x). Infix "^" := power. End QType_Notation. Module Type QType' := QType <+ QType_Notation. Module QProperties (Import Q : QType'). (** Conversion to Q *) Hint Rewrite spec_red spec_compare spec_eq_bool spec_min spec_max spec_add spec_sub spec_opp spec_mul spec_square spec_inv spec_div spec_power : qsimpl. Ltac qify := unfold eq, lt, le in *; autorewrite with qsimpl; try rewrite spec_0 in *; try rewrite spec_1 in *; try rewrite spec_m1 in *. (** NB: do not add [spec_0] in the autorewrite database. Otherwise, after instantiation in BigQ, this lemma become convertible to 0=0, and autorewrite loops. Idem for [spec_1] and [spec_m1] *) (** Morphisms *) Ltac solve_wd1 := intros x x' Hx; qify; now rewrite Hx. Ltac solve_wd2 := intros x x' Hx y y' Hy; qify; now rewrite Hx, Hy. Local Obligation Tactic := solve_wd2 || solve_wd1. Instance : Measure to_Q. Instance eq_equiv : Equivalence eq := {}. Program Instance lt_wd : Proper (eq==>eq==>iff) lt. Program Instance le_wd : Proper (eq==>eq==>iff) le. Program Instance red_wd : Proper (eq==>eq) red. Program Instance compare_wd : Proper (eq==>eq==>Logic.eq) compare. Program Instance eq_bool_wd : Proper (eq==>eq==>Logic.eq) eq_bool. Program Instance min_wd : Proper (eq==>eq==>eq) min. Program Instance max_wd : Proper (eq==>eq==>eq) max. Program Instance add_wd : Proper (eq==>eq==>eq) add. Program Instance sub_wd : Proper (eq==>eq==>eq) sub. Program Instance opp_wd : Proper (eq==>eq) opp. Program Instance mul_wd : Proper (eq==>eq==>eq) mul. Program Instance square_wd : Proper (eq==>eq) square. Program Instance inv_wd : Proper (eq==>eq) inv. Program Instance div_wd : Proper (eq==>eq==>eq) div. Program Instance power_wd : Proper (eq==>Logic.eq==>eq) power. (** Let's implement [HasCompare] *) Lemma compare_spec : forall x y, CompareSpec (x==y) (x x x == y. Proof. intros. qify. apply Qeq_bool_iff. Qed. Lemma eqb_correct : forall x y, eq_bool x y = true -> x == y. Proof. now apply eqb_eq. Qed. Lemma eqb_complete : forall x y, x == y -> eq_bool x y = true. Proof. now apply eqb_eq. Qed. (** Let's implement [HasMinMax] *) Lemma max_l : forall x y, y<=x -> max x y == x. Proof. intros x y. qify. apply Qminmax.Q.max_l. Qed. Lemma max_r : forall x y, x<=y -> max x y == y. Proof. intros x y. qify. apply Qminmax.Q.max_r. Qed. Lemma min_l : forall x y, x<=y -> min x y == x. Proof. intros x y. qify. apply Qminmax.Q.min_l. Qed. Lemma min_r : forall x y, y<=x -> min x y == y. Proof. intros x y. qify. apply Qminmax.Q.min_r. Qed. (** Q is a ring *) Lemma add_0_l : forall x, 0+x == x. Proof. intros. qify. apply Qplus_0_l. Qed. Lemma add_comm : forall x y, x+y == y+x. Proof. intros. qify. apply Qplus_comm. Qed. Lemma add_assoc : forall x y z, x+(y+z) == x+y+z. Proof. intros. qify. apply Qplus_assoc. Qed. Lemma mul_1_l : forall x, 1*x == x. Proof. intros. qify. apply Qmult_1_l. Qed. Lemma mul_comm : forall x y, x*y == y*x. Proof. intros. qify. apply Qmult_comm. Qed. Lemma mul_assoc : forall x y z, x*(y*z) == x*y*z. Proof. intros. qify. apply Qmult_assoc. Qed. Lemma mul_add_distr_r : forall x y z, (x+y)*z == x*z + y*z. Proof. intros. qify. apply Qmult_plus_distr_l. Qed. Lemma sub_add_opp : forall x y, x-y == x+(-y). Proof. intros. qify. now unfold Qminus. Qed. Lemma add_opp_diag_r : forall x, x+(-x) == 0. Proof. intros. qify. apply Qplus_opp_r. Qed. (** Q is a field *) Lemma neq_1_0 : 1!=0. Proof. intros. qify. apply Q_apart_0_1. Qed. Lemma div_mul_inv : forall x y, x/y == x*(/y). Proof. intros. qify. now unfold Qdiv. Qed. Lemma mul_inv_diag_l : forall x, x!=0 -> /x * x == 1. Proof. intros x. qify. rewrite Qmult_comm. apply Qmult_inv_r. Qed. End QProperties. Module QTypeExt (Q : QType) <: QType <: TotalOrder <: HasCompare Q <: HasMinMax Q <: HasEqBool Q := Q <+ QProperties.