(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* eq) succ. Program Instance pred_wd : Proper (eq==>eq) pred. Program Instance add_wd : Proper (eq==>eq==>eq) add. Program Instance sub_wd : Proper (eq==>eq==>eq) sub. Program Instance mul_wd : Proper (eq==>eq==>eq) mul. Theorem pred_succ : forall n, pred (succ n) == n. Proof. intros. zify. omega_pos n. Qed. Theorem one_succ : 1 == succ 0. Proof. now zify. Qed. Theorem two_succ : 2 == succ 1. Proof. now zify. Qed. Definition N_of_Z z := of_N (Z.to_N z). Lemma spec_N_of_Z z : (0<=z)%Z -> [N_of_Z z] = z. Proof. unfold N_of_Z. zify. apply Z2N.id. Qed. Section Induction. Variable A : NN.t -> Prop. Hypothesis A_wd : Proper (eq==>iff) A. Hypothesis A0 : A 0. Hypothesis AS : forall n, A n <-> A (succ n). Let B (z : Z) := A (N_of_Z z). Lemma B0 : B 0. Proof. unfold B, N_of_Z; simpl. rewrite <- (A_wd 0); auto. red; rewrite spec_0, spec_of_N; auto. Qed. Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1). Proof. intros z H1 H2. unfold B in *. apply -> AS in H2. setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto. unfold eq. rewrite spec_succ, 2 spec_N_of_Z; auto with zarith. Qed. Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z. Proof. exact (natlike_ind B B0 BS). Qed. Theorem bi_induction : forall n, A n. Proof. intro n. setoid_replace n with (N_of_Z (to_Z n)). apply B_holds. apply spec_pos. red. now rewrite spec_N_of_Z by apply spec_pos. Qed. End Induction. Theorem add_0_l : forall n, 0 + n == n. Proof. intros. zify. auto with zarith. Qed. Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m). Proof. intros. zify. auto with zarith. Qed. Theorem sub_0_r : forall n, n - 0 == n. Proof. intros. zify. omega_pos n. Qed. Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m). Proof. intros. zify. omega with *. Qed. Theorem mul_0_l : forall n, 0 * n == 0. Proof. intros. zify. auto with zarith. Qed. Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m. Proof. intros. zify. ring. Qed. (** Order *) Lemma eqb_eq x y : eqb x y = true <-> x == y. Proof. zify. apply Z.eqb_eq. Qed. Lemma leb_le x y : leb x y = true <-> x <= y. Proof. zify. apply Z.leb_le. Qed. Lemma ltb_lt x y : ltb x y = true <-> x < y. Proof. zify. apply Z.ltb_lt. Qed. Lemma compare_eq_iff n m : compare n m = Eq <-> n == m. Proof. intros. zify. apply Z.compare_eq_iff. Qed. Lemma compare_lt_iff n m : compare n m = Lt <-> n < m. Proof. intros. zify. reflexivity. Qed. Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m. Proof. intros. zify. reflexivity. Qed. Lemma compare_antisym n m : compare m n = CompOpp (compare n m). Proof. intros. zify. apply Z.compare_antisym. Qed. Include BoolOrderFacts NN NN NN [no inline]. Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance lt_wd : Proper (eq ==> eq ==> iff) lt. Proof. intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition. Qed. Theorem lt_succ_r : forall n m, n < succ m <-> n <= m. Proof. intros. zify. omega. Qed. Theorem min_l : forall n m, n <= m -> min n m == n. Proof. intros n m. zify. omega with *. Qed. Theorem min_r : forall n m, m <= n -> min n m == m. Proof. intros n m. zify. omega with *. Qed. Theorem max_l : forall n m, m <= n -> max n m == n. Proof. intros n m. zify. omega with *. Qed. Theorem max_r : forall n m, n <= m -> max n m == m. Proof. intros n m. zify. omega with *. Qed. (** Properties specific to natural numbers, not integers. *) Theorem pred_0 : pred 0 == 0. Proof. zify. auto. Qed. (** Power *) Program Instance pow_wd : Proper (eq==>eq==>eq) pow. Lemma pow_0_r : forall a, a^0 == 1. Proof. intros. now zify. Qed. Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b. Proof. intros a b. zify. intros. now Z.nzsimpl. Qed. Lemma pow_neg_r : forall a b, b<0 -> a^b == 0. Proof. intros a b. zify. intro Hb. exfalso. omega_pos b. Qed. Lemma pow_pow_N : forall a b, a^b == pow_N a (to_N b). Proof. intros. zify. f_equal. now rewrite Z2N.id by apply spec_pos. Qed. Lemma pow_N_pow : forall a b, pow_N a b == a^(of_N b). Proof. intros. now zify. Qed. Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p). Proof. intros. now zify. Qed. (** Square *) Lemma square_spec n : square n == n * n. Proof. now zify. Qed. (** Sqrt *) Lemma sqrt_spec : forall n, 0<=n -> (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)). Proof. intros n. zify. apply Z.sqrt_spec. Qed. Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0. Proof. intros n. zify. intro H. exfalso. omega_pos n. Qed. (** Log2 *) Lemma log2_spec : forall n, 0 2^(log2 n) <= n /\ n < 2^(succ (log2 n)). Proof. intros n. zify. change (Z.log2 [n]+1)%Z with (Z.succ (Z.log2 [n])). apply Z.log2_spec. Qed. Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0. Proof. intros n. zify. apply Z.log2_nonpos. Qed. (** Even / Odd *) Definition Even n := exists m, n == 2*m. Definition Odd n := exists m, n == 2*m+1. Lemma even_spec n : even n = true <-> Even n. Proof. unfold Even. zify. rewrite Z.even_spec. split; intros (m,Hm). - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n. - exists [m]. revert Hm; now zify. Qed. Lemma odd_spec n : odd n = true <-> Odd n. Proof. unfold Odd. zify. rewrite Z.odd_spec. split; intros (m,Hm). - exists (N_of_Z m). zify. rewrite spec_N_of_Z; trivial. omega_pos n. - exists [m]. revert Hm; now zify. Qed. (** Div / Mod *) Program Instance div_wd : Proper (eq==>eq==>eq) div. Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). Proof. intros a b. zify. intros. apply Z.div_mod; auto. Qed. Theorem mod_bound_pos : forall a b, 0<=a -> 0 0 <= modulo a b /\ modulo a b < b. Proof. intros a b. zify. apply Z.mod_bound_pos. Qed. (** Gcd *) Definition divide n m := exists p, m == p*n. Local Notation "( x | y )" := (divide x y) (at level 0). Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m]. Proof. intros n m. split. - intros (p,H). exists [p]. revert H; now zify. - intros (z,H). exists (of_N (Z.abs_N z)). zify. rewrite N2Z.inj_abs_N. rewrite <- (Z.abs_eq [m]), <- (Z.abs_eq [n]) by apply spec_pos. now rewrite H, Z.abs_mul. Qed. Lemma gcd_divide_l : forall n m, (gcd n m | n). Proof. intros n m. apply spec_divide. zify. apply Z.gcd_divide_l. Qed. Lemma gcd_divide_r : forall n m, (gcd n m | m). Proof. intros n m. apply spec_divide. zify. apply Z.gcd_divide_r. Qed. Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m). Proof. intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest. Qed. Lemma gcd_nonneg : forall n m, 0 <= gcd n m. Proof. intros. zify. apply Z.gcd_nonneg. Qed. (** Bitwise operations *) Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit. Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true. Proof. intros. zify. apply Z.testbit_odd_0. Qed. Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false. Proof. intros. zify. apply Z.testbit_even_0. Qed. Lemma testbit_odd_succ : forall a n, 0<=n -> testbit (2*a+1) (succ n) = testbit a n. Proof. intros a n. zify. apply Z.testbit_odd_succ. Qed. Lemma testbit_even_succ : forall a n, 0<=n -> testbit (2*a) (succ n) = testbit a n. Proof. intros a n. zify. apply Z.testbit_even_succ. Qed. Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false. Proof. intros a n. zify. apply Z.testbit_neg_r. Qed. Lemma shiftr_spec : forall a n m, 0<=m -> testbit (shiftr a n) m = testbit a (m+n). Proof. intros a n m. zify. apply Z.shiftr_spec. Qed. Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m -> testbit (shiftl a n) m = testbit a (m-n). Proof. intros a n m. zify. intros Hn H. rewrite Z.max_r by auto with zarith. now apply Z.shiftl_spec_high. Qed. Lemma shiftl_spec_low : forall a n m, m testbit (shiftl a n) m = false. Proof. intros a n m. zify. intros H. now apply Z.shiftl_spec_low. Qed. Lemma land_spec : forall a b n, testbit (land a b) n = testbit a n && testbit b n. Proof. intros a n m. zify. now apply Z.land_spec. Qed. Lemma lor_spec : forall a b n, testbit (lor a b) n = testbit a n || testbit b n. Proof. intros a n m. zify. now apply Z.lor_spec. Qed. Lemma ldiff_spec : forall a b n, testbit (ldiff a b) n = testbit a n && negb (testbit b n). Proof. intros a n m. zify. now apply Z.ldiff_spec. Qed. Lemma lxor_spec : forall a b n, testbit (lxor a b) n = xorb (testbit a n) (testbit b n). Proof. intros a n m. zify. now apply Z.lxor_spec. Qed. Lemma div2_spec : forall a, div2 a == shiftr a 1. Proof. intros a. zify. now apply Z.div2_spec. Qed. (** Recursion *) Definition recursion (A : Type) (a : A) (f : NN.t -> A -> A) (n : NN.t) := N.peano_rect (fun _ => A) a (fun n a => f (NN.of_N n) a) (NN.to_N n). Arguments recursion [A] a f n. Instance recursion_wd (A : Type) (Aeq : relation A) : Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A). Proof. unfold eq. intros a a' Eaa' f f' Eff' x x' Exx'. unfold recursion. unfold NN.to_N. rewrite <- Exx'; clear x' Exx'. induction (Z.to_N [x]) using N.peano_ind. simpl; auto. rewrite 2 N.peano_rect_succ. now apply Eff'. Qed. Theorem recursion_0 : forall (A : Type) (a : A) (f : NN.t -> A -> A), recursion a f 0 = a. Proof. intros A a f; unfold recursion, NN.to_N; rewrite NN.spec_0; simpl; auto. Qed. Theorem recursion_succ : forall (A : Type) (Aeq : relation A) (a : A) (f : NN.t -> A -> A), Aeq a a -> Proper (eq==>Aeq==>Aeq) f -> forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)). Proof. unfold eq, recursion; intros A Aeq a f EAaa f_wd n. replace (to_N (succ n)) with (N.succ (to_N n)) by (zify; now rewrite <- Z2N.inj_succ by apply spec_pos). rewrite N.peano_rect_succ. apply f_wd; auto. zify. now rewrite Z2N.id by apply spec_pos. fold (recursion a f n). apply recursion_wd; auto. red; auto. Qed. End NTypeIsNAxioms. Module NType_NAxioms (NN : NType) <: NAxiomsSig <: OrderFunctions NN <: HasMinMax NN := NN <+ NTypeIsNAxioms.