(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* eq) succ. Program Instance pred_wd : Proper (eq==>eq) pred. Program Instance add_wd : Proper (eq==>eq==>eq) add. Program Instance sub_wd : Proper (eq==>eq==>eq) sub. Program Instance mul_wd : Proper (eq==>eq==>eq) mul. Theorem pred_succ : forall n, pred (succ n) == n. Proof. intros. zify. generalize (spec_pos n); omega with *. Qed. Definition N_of_Z z := of_N (Zabs_N z). Section Induction. Variable A : N.t -> Prop. Hypothesis A_wd : Proper (eq==>iff) A. Hypothesis A0 : A 0. Hypothesis AS : forall n, A n <-> A (succ n). Let B (z : Z) := A (N_of_Z z). Lemma B0 : B 0. Proof. unfold B, N_of_Z; simpl. rewrite <- (A_wd 0); auto. red; rewrite spec_0, spec_of_N; auto. Qed. Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1). Proof. intros z H1 H2. unfold B in *. apply -> AS in H2. setoid_replace (N_of_Z (z + 1)) with (succ (N_of_Z z)); auto. unfold eq. rewrite spec_succ. unfold N_of_Z. rewrite 2 spec_of_N, 2 Z_of_N_abs, 2 Zabs_eq; auto with zarith. Qed. Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z. Proof. exact (natlike_ind B B0 BS). Qed. Theorem bi_induction : forall n, A n. Proof. intro n. setoid_replace n with (N_of_Z (to_Z n)). apply B_holds. apply spec_pos. red; unfold N_of_Z. rewrite spec_of_N, Z_of_N_abs, Zabs_eq; auto. apply spec_pos. Qed. End Induction. Theorem add_0_l : forall n, 0 + n == n. Proof. intros. zify. auto with zarith. Qed. Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m). Proof. intros. zify. auto with zarith. Qed. Theorem sub_0_r : forall n, n - 0 == n. Proof. intros. zify. generalize (spec_pos n); omega with *. Qed. Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m). Proof. intros. zify. omega with *. Qed. Theorem mul_0_l : forall n, 0 * n == 0. Proof. intros. zify. auto with zarith. Qed. Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m. Proof. intros. zify. ring. Qed. (** Order *) Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y). Proof. intros. zify. destruct (Zcompare_spec [x] [y]); auto. Qed. Definition eqb := eq_bool. Lemma eqb_eq : forall x y, eq_bool x y = true <-> x == y. Proof. intros. zify. symmetry. apply Zeq_is_eq_bool. Qed. Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare. Proof. intros x x' Hx y y' Hy. rewrite 2 spec_compare, Hx, Hy; intuition. Qed. Instance lt_wd : Proper (eq ==> eq ==> iff) lt. Proof. intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition. Qed. Theorem lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m. Proof. intros. zify. omega. Qed. Theorem lt_irrefl : forall n, ~ n < n. Proof. intros. zify. omega. Qed. Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m. Proof. intros. zify. omega. Qed. Theorem min_l : forall n m, n <= m -> min n m == n. Proof. intros n m. zify. omega with *. Qed. Theorem min_r : forall n m, m <= n -> min n m == m. Proof. intros n m. zify. omega with *. Qed. Theorem max_l : forall n m, m <= n -> max n m == n. Proof. intros n m. zify. omega with *. Qed. Theorem max_r : forall n m, n <= m -> max n m == m. Proof. intros n m. zify. omega with *. Qed. (** Properties specific to natural numbers, not integers. *) Theorem pred_0 : pred 0 == 0. Proof. zify. auto. Qed. Program Instance div_wd : Proper (eq==>eq==>eq) div. Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). Proof. intros a b. zify. intros. apply Z_div_mod_eq_full; auto. Qed. Theorem mod_upper_bound : forall a b, ~b==0 -> modulo a b < b. Proof. intros a b. zify. intros. destruct (Z_mod_lt [a] [b]); auto. generalize (spec_pos b); auto with zarith. Qed. Definition recursion (A : Type) (a : A) (f : N.t -> A -> A) (n : N.t) := Nrect (fun _ => A) a (fun n a => f (N.of_N n) a) (N.to_N n). Implicit Arguments recursion [A]. Instance recursion_wd (A : Type) (Aeq : relation A) : Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A). Proof. unfold eq. intros a a' Eaa' f f' Eff' x x' Exx'. unfold recursion. unfold N.to_N. rewrite <- Exx'; clear x' Exx'. replace (Zabs_N [x]) with (N_of_nat (Zabs_nat [x])). induction (Zabs_nat [x]). simpl; auto. rewrite N_of_S, 2 Nrect_step; auto. apply Eff'; auto. destruct [x]; simpl; auto. change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N. change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N. Qed. Theorem recursion_0 : forall (A : Type) (a : A) (f : N.t -> A -> A), recursion a f 0 = a. Proof. intros A a f; unfold recursion, N.to_N; rewrite N.spec_0; simpl; auto. Qed. Theorem recursion_succ : forall (A : Type) (Aeq : relation A) (a : A) (f : N.t -> A -> A), Aeq a a -> Proper (eq==>Aeq==>Aeq) f -> forall n, Aeq (recursion a f (succ n)) (f n (recursion a f n)). Proof. unfold N.eq, recursion; intros A Aeq a f EAaa f_wd n. replace (N.to_N (succ n)) with (Nsucc (N.to_N n)). rewrite Nrect_step. apply f_wd; auto. unfold N.to_N. rewrite N.spec_of_N, Z_of_N_abs, Zabs_eq; auto. apply N.spec_pos. fold (recursion a f n). apply recursion_wd; auto. red; auto. unfold N.to_N. rewrite N.spec_succ. change ([n]+1)%Z with (Zsucc [n]). apply Z_of_N_eq_rev. rewrite Z_of_N_succ. rewrite 2 Z_of_N_abs. rewrite 2 Zabs_eq; auto. generalize (spec_pos n); auto with zarith. apply spec_pos; auto. Qed. End NTypeIsNAxioms. Module NType_NAxioms (N : NType) <: NAxiomsSig <: NDivSig <: HasCompare N <: HasEqBool N <: HasMinMax N := N <+ NTypeIsNAxioms.