(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* let v := (eval red_t in u) in change v end. (** * Generic results *) Tactic Notation "destr_t" constr(x) "as" simple_intropattern(pat) := destruct (destr_t x) as pat; cbv zeta; rewrite ?iter_mk_t, ?spec_mk_t, ?spec_reduce. Lemma spec_same_level : forall A (P:Z->Z->A->Prop) (f : forall n, dom_t n -> dom_t n -> A), (forall n x y, P (ZnZ.to_Z x) (ZnZ.to_Z y) (f n x y)) -> forall x y, P [x] [y] (same_level f x y). Proof. intros. apply spec_same_level_dep with (P:=fun _ => P); auto. Qed. Theorem spec_pos: forall x, 0 <= [x]. Proof. intros x. destr_t x as (n,x). now case (ZnZ.spec_to_Z x). Qed. Lemma digits_dom_op_incr : forall n m, (n<=m)%nat -> (ZnZ.digits (dom_op n) <= ZnZ.digits (dom_op m))%positive. Proof. intros. change (Zpos (ZnZ.digits (dom_op n)) <= Zpos (ZnZ.digits (dom_op m))). rewrite !digits_dom_op, !Pshiftl_nat_Zpower. apply Z.mul_le_mono_nonneg_l; auto with zarith. apply Z.pow_le_mono_r; auto with zarith. Qed. Definition to_N (x : t) := Z.to_N (to_Z x). (** * Zero, One *) Definition zero := mk_t O ZnZ.zero. Definition one := mk_t O ZnZ.one. Theorem spec_0: [zero] = 0. Proof. unfold zero. rewrite spec_mk_t. exact ZnZ.spec_0. Qed. Theorem spec_1: [one] = 1. Proof. unfold one. rewrite spec_mk_t. exact ZnZ.spec_1. Qed. (** * Successor *) (** NB: it is crucial here and for the rest of this file to preserve the let-in's. They allow to pre-compute once and for all the field access to Z/nZ initial structures (when n=0..6). *) Local Notation succn := (fun n => let op := dom_op n in let succ_c := ZnZ.succ_c in let one := ZnZ.one in fun x => match succ_c x with | C0 r => mk_t n r | C1 r => mk_t_S n (WW one r) end). Definition succ : t -> t := Eval red_t in iter_t succn. Lemma succ_fold : succ = iter_t succn. Proof. red_t; reflexivity. Qed. Theorem spec_succ: forall n, [succ n] = [n] + 1. Proof. intros x. rewrite succ_fold. destr_t x as (n,x). generalize (ZnZ.spec_succ_c x); case ZnZ.succ_c. intros. rewrite spec_mk_t. assumption. intros. unfold interp_carry in *. rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_1. assumption. Qed. (** Two *) (** Not really pretty, but since W0 might be Z/2Z, we're not sure there's a proper 2 there. *) Definition two := succ one. Lemma spec_2 : [two] = 2. Proof. unfold two. now rewrite spec_succ, spec_1. Qed. (** * Addition *) Local Notation addn := (fun n => let op := dom_op n in let add_c := ZnZ.add_c in let one := ZnZ.one in fun x y =>match add_c x y with | C0 r => mk_t n r | C1 r => mk_t_S n (WW one r) end). Definition add : t -> t -> t := Eval red_t in same_level addn. Lemma add_fold : add = same_level addn. Proof. red_t; reflexivity. Qed. Theorem spec_add: forall x y, [add x y] = [x] + [y]. Proof. intros x y. rewrite add_fold. apply spec_same_level; clear x y. intros n x y. cbv beta iota zeta. generalize (ZnZ.spec_add_c x y); case ZnZ.add_c; intros z H. rewrite spec_mk_t. assumption. rewrite spec_mk_t_S. unfold interp_carry in H. simpl. rewrite ZnZ.spec_1. assumption. Qed. (** * Predecessor *) Local Notation predn := (fun n => let pred_c := ZnZ.pred_c in fun x => match pred_c x with | C0 r => reduce n r | C1 _ => zero end). Definition pred : t -> t := Eval red_t in iter_t predn. Lemma pred_fold : pred = iter_t predn. Proof. red_t; reflexivity. Qed. Theorem spec_pred_pos : forall x, 0 < [x] -> [pred x] = [x] - 1. Proof. intros x. rewrite pred_fold. destr_t x as (n,x). intros H. generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'. rewrite spec_reduce. assumption. exfalso. unfold interp_carry in *. generalize (ZnZ.spec_to_Z x) (ZnZ.spec_to_Z y); auto with zarith. Qed. Theorem spec_pred0 : forall x, [x] = 0 -> [pred x] = 0. Proof. intros x. rewrite pred_fold. destr_t x as (n,x). intros H. generalize (ZnZ.spec_pred_c x); case ZnZ.pred_c; intros y H'. rewrite spec_reduce. unfold interp_carry in H'. generalize (ZnZ.spec_to_Z y); auto with zarith. exact spec_0. Qed. Lemma spec_pred x : [pred x] = Z.max 0 ([x]-1). Proof. rewrite Z.max_comm. destruct (Z.max_spec ([x]-1) 0) as [(H,->)|(H,->)]. - apply spec_pred0; generalize (spec_pos x); auto with zarith. - apply spec_pred_pos; auto with zarith. Qed. (** * Subtraction *) Local Notation subn := (fun n => let sub_c := ZnZ.sub_c in fun x y => match sub_c x y with | C0 r => reduce n r | C1 r => zero end). Definition sub : t -> t -> t := Eval red_t in same_level subn. Lemma sub_fold : sub = same_level subn. Proof. red_t; reflexivity. Qed. Theorem spec_sub_pos : forall x y, [y] <= [x] -> [sub x y] = [x] - [y]. Proof. intros x y. rewrite sub_fold. apply spec_same_level. clear x y. intros n x y. simpl. generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE. rewrite spec_reduce. assumption. unfold interp_carry in H. exfalso. generalize (ZnZ.spec_to_Z z); auto with zarith. Qed. Theorem spec_sub0 : forall x y, [x] < [y] -> [sub x y] = 0. Proof. intros x y. rewrite sub_fold. apply spec_same_level. clear x y. intros n x y. simpl. generalize (ZnZ.spec_sub_c x y); case ZnZ.sub_c; intros z H LE. rewrite spec_reduce. unfold interp_carry in H. generalize (ZnZ.spec_to_Z z); auto with zarith. exact spec_0. Qed. Lemma spec_sub : forall x y, [sub x y] = Z.max 0 ([x]-[y]). Proof. intros. destruct (Z.le_gt_cases [y] [x]). rewrite Z.max_r; auto with zarith. apply spec_sub_pos; auto. rewrite Z.max_l; auto with zarith. apply spec_sub0; auto. Qed. (** * Comparison *) Definition comparen_m n : forall m, word (dom_t n) (S m) -> dom_t n -> comparison := let op := dom_op n in let zero := ZnZ.zero (Ops:=op) in let compare := ZnZ.compare (Ops:=op) in let compare0 := compare zero in fun m => compare_mn_1 (dom_t n) (dom_t n) zero compare compare0 compare (S m). Let spec_comparen_m: forall n m (x : word (dom_t n) (S m)) (y : dom_t n), comparen_m n m x y = Z.compare (eval n (S m) x) (ZnZ.to_Z y). Proof. intros n m x y. unfold comparen_m, eval. rewrite nmake_double. apply spec_compare_mn_1. exact ZnZ.spec_0. intros. apply ZnZ.spec_compare. exact ZnZ.spec_to_Z. exact ZnZ.spec_compare. exact ZnZ.spec_compare. exact ZnZ.spec_to_Z. Qed. Definition comparenm n m wx wy := let mn := Max.max n m in let d := diff n m in let op := make_op mn in ZnZ.compare (castm (diff_r n m) (extend_tr wx (snd d))) (castm (diff_l n m) (extend_tr wy (fst d))). Local Notation compare_folded := (iter_sym _ (fun n => ZnZ.compare (Ops:=dom_op n)) comparen_m comparenm CompOpp). Definition compare : t -> t -> comparison := Eval lazy beta iota delta [iter_sym dom_op dom_t comparen_m] in compare_folded. Lemma compare_fold : compare = compare_folded. Proof. lazy beta iota delta [iter_sym dom_op dom_t comparen_m]. reflexivity. Qed. Theorem spec_compare : forall x y, compare x y = Z.compare [x] [y]. Proof. intros x y. rewrite compare_fold. apply spec_iter_sym; clear x y. intros. apply ZnZ.spec_compare. intros. cbv beta zeta. apply spec_comparen_m. intros n m x y; unfold comparenm. rewrite (spec_cast_l n m x), (spec_cast_r n m y). unfold to_Z; apply ZnZ.spec_compare. intros. subst. now rewrite <- Z.compare_antisym. Qed. Definition eqb (x y : t) : bool := match compare x y with | Eq => true | _ => false end. Theorem spec_eqb x y : eqb x y = Z.eqb [x] [y]. Proof. apply eq_iff_eq_true. unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare. split; [now destruct Z.compare | now intros ->]. Qed. Definition lt (n m : t) := [n] < [m]. Definition le (n m : t) := [n] <= [m]. Definition ltb (x y : t) : bool := match compare x y with | Lt => true | _ => false end. Theorem spec_ltb x y : ltb x y = Z.ltb [x] [y]. Proof. apply eq_iff_eq_true. rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare. split; [now destruct Z.compare | now intros ->]. Qed. Definition leb (x y : t) : bool := match compare x y with | Gt => false | _ => true end. Theorem spec_leb x y : leb x y = Z.leb [x] [y]. Proof. apply eq_iff_eq_true. rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare. destruct Z.compare; split; try easy. now destruct 1. Qed. Definition min (n m : t) : t := match compare n m with Gt => m | _ => n end. Definition max (n m : t) : t := match compare n m with Lt => m | _ => n end. Theorem spec_max : forall n m, [max n m] = Z.max [n] [m]. Proof. intros. unfold max, Z.max. rewrite spec_compare; destruct Z.compare; reflexivity. Qed. Theorem spec_min : forall n m, [min n m] = Z.min [n] [m]. Proof. intros. unfold min, Z.min. rewrite spec_compare; destruct Z.compare; reflexivity. Qed. (** * Multiplication *) Definition wn_mul n : forall m, word (dom_t n) (S m) -> dom_t n -> t := let op := dom_op n in let zero := ZnZ.zero in let succ := ZnZ.succ (Ops:=op) in let add_c := ZnZ.add_c (Ops:=op) in let mul_c := ZnZ.mul_c (Ops:=op) in let ww := @ZnZ.WW _ op in let ow := @ZnZ.OW _ op in let eq0 := ZnZ.eq0 in let mul_add := @DoubleMul.w_mul_add _ zero succ add_c mul_c in let mul_add_n1 := @DoubleMul.double_mul_add_n1 _ zero ww ow mul_add in fun m x y => let (w,r) := mul_add_n1 (S m) x y zero in if eq0 w then mk_t_w' n m r else mk_t_w' n (S m) (WW (extend n m w) r). Definition mulnm n m x y := let mn := Max.max n m in let d := diff n m in let op := make_op mn in reduce_n (S mn) (ZnZ.mul_c (castm (diff_r n m) (extend_tr x (snd d))) (castm (diff_l n m) (extend_tr y (fst d)))). Local Notation mul_folded := (iter_sym _ (fun n => let mul_c := ZnZ.mul_c in fun x y => reduce (S n) (succ_t _ (mul_c x y))) wn_mul mulnm (fun x => x)). Definition mul : t -> t -> t := Eval lazy beta iota delta [iter_sym dom_op dom_t reduce succ_t extend zeron wn_mul DoubleMul.w_mul_add mk_t_w'] in mul_folded. Lemma mul_fold : mul = mul_folded. Proof. lazy beta iota delta [iter_sym dom_op dom_t reduce succ_t extend zeron wn_mul DoubleMul.w_mul_add mk_t_w']. reflexivity. Qed. Lemma spec_muln: forall n (x: word _ (S n)) y, [Nn (S n) (ZnZ.mul_c (Ops:=make_op n) x y)] = [Nn n x] * [Nn n y]. Proof. intros n x y; unfold to_Z. rewrite <- ZnZ.spec_mul_c. rewrite make_op_S. case ZnZ.mul_c; auto. Qed. Lemma spec_mul_add_n1: forall n m x y z, let (q,r) := DoubleMul.double_mul_add_n1 ZnZ.zero ZnZ.WW ZnZ.OW (DoubleMul.w_mul_add ZnZ.zero ZnZ.succ ZnZ.add_c ZnZ.mul_c) (S m) x y z in ZnZ.to_Z q * (base (ZnZ.digits (nmake_op _ (dom_op n) (S m)))) + eval n (S m) r = eval n (S m) x * ZnZ.to_Z y + ZnZ.to_Z z. Proof. intros n m x y z. rewrite digits_nmake. unfold eval. rewrite nmake_double. apply DoubleMul.spec_double_mul_add_n1. apply ZnZ.spec_0. exact ZnZ.spec_WW. exact ZnZ.spec_OW. apply DoubleCyclic.spec_mul_add. Qed. Lemma spec_wn_mul : forall n m x y, [wn_mul n m x y] = (eval n (S m) x) * ZnZ.to_Z y. Proof. intros; unfold wn_mul. generalize (spec_mul_add_n1 n m x y ZnZ.zero). case DoubleMul.double_mul_add_n1; intros q r Hqr. rewrite ZnZ.spec_0, Z.add_0_r in Hqr. rewrite <- Hqr. generalize (ZnZ.spec_eq0 q); case ZnZ.eq0; intros HH. rewrite HH; auto. simpl. apply spec_mk_t_w'. clear. rewrite spec_mk_t_w'. set (m' := S m) in *. unfold eval. rewrite nmake_WW. f_equal. f_equal. rewrite <- spec_mk_t. symmetry. apply spec_extend. Qed. Theorem spec_mul : forall x y, [mul x y] = [x] * [y]. Proof. intros x y. rewrite mul_fold. apply spec_iter_sym; clear x y. intros n x y. cbv zeta beta. rewrite spec_reduce, spec_succ_t, <- ZnZ.spec_mul_c; auto. apply spec_wn_mul. intros n m x y; unfold mulnm. rewrite spec_reduce_n. rewrite (spec_cast_l n m x), (spec_cast_r n m y). apply spec_muln. intros. rewrite Z.mul_comm; auto. Qed. (** * Division by a smaller number *) Definition wn_divn1 n := let op := dom_op n in let zd := ZnZ.zdigits op in let zero := ZnZ.zero in let ww := ZnZ.WW in let head0 := ZnZ.head0 in let add_mul_div := ZnZ.add_mul_div in let div21 := ZnZ.div21 in let compare := ZnZ.compare in let sub := ZnZ.sub in let ddivn1 := DoubleDivn1.double_divn1 zd zero ww head0 add_mul_div div21 compare sub in fun m x y => let (u,v) := ddivn1 (S m) x y in (mk_t_w' n m u, mk_t n v). Definition div_gtnm n m wx wy := let mn := Max.max n m in let d := diff n m in let op := make_op mn in let (q, r):= ZnZ.div_gt (castm (diff_r n m) (extend_tr wx (snd d))) (castm (diff_l n m) (extend_tr wy (fst d))) in (reduce_n mn q, reduce_n mn r). Local Notation div_gt_folded := (iter _ (fun n => let div_gt := ZnZ.div_gt in fun x y => let (u,v) := div_gt x y in (reduce n u, reduce n v)) (fun n => let div_gt := ZnZ.div_gt in fun m x y => let y' := DoubleBase.get_low (zeron n) (S m) y in let (u,v) := div_gt x y' in (reduce n u, reduce n v)) wn_divn1 div_gtnm). Definition div_gt := Eval lazy beta iota delta [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t] in div_gt_folded. Lemma div_gt_fold : div_gt = div_gt_folded. Proof. lazy beta iota delta [iter dom_op dom_t reduce zeron wn_divn1 mk_t_w' mk_t]. reflexivity. Qed. Lemma spec_get_endn: forall n m x y, eval n m x <= [mk_t n y] -> [mk_t n (DoubleBase.get_low (zeron n) m x)] = eval n m x. Proof. intros n m x y H. unfold eval. rewrite nmake_double. rewrite spec_mk_t in *. apply DoubleBase.spec_get_low. apply spec_zeron. exact ZnZ.spec_to_Z. apply Z.le_lt_trans with (ZnZ.to_Z y); auto. rewrite <- nmake_double; auto. case (ZnZ.spec_to_Z y); auto. Qed. Definition spec_divn1 n := DoubleDivn1.spec_double_divn1 (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n) ZnZ.WW ZnZ.head0 ZnZ.add_mul_div ZnZ.div21 ZnZ.compare ZnZ.sub ZnZ.to_Z ZnZ.spec_to_Z ZnZ.spec_zdigits ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0 ZnZ.spec_add_mul_div ZnZ.spec_div21 ZnZ.spec_compare ZnZ.spec_sub. Lemma spec_div_gt_aux : forall x y, [x] > [y] -> 0 < [y] -> let (q,r) := div_gt x y in [x] = [q] * [y] + [r] /\ 0 <= [r] < [y]. Proof. intros x y. rewrite div_gt_fold. apply spec_iter; clear x y. intros n x y H1 H2. simpl. generalize (ZnZ.spec_div_gt x y H1 H2); case ZnZ.div_gt. intros u v. rewrite 2 spec_reduce. auto. intros n m x y H1 H2. cbv zeta beta. generalize (ZnZ.spec_div_gt x (DoubleBase.get_low (zeron n) (S m) y)). case ZnZ.div_gt. intros u v H3; repeat rewrite spec_reduce. generalize (spec_get_endn n (S m) y x). rewrite !spec_mk_t. intros H4. rewrite H4 in H3; auto with zarith. intros n m x y H1 H2. generalize (spec_divn1 n (S m) x y H2). unfold wn_divn1; case DoubleDivn1.double_divn1. intros u v H3. rewrite spec_mk_t_w', spec_mk_t. rewrite <- !nmake_double in H3; auto. intros n m x y H1 H2; unfold div_gtnm. generalize (ZnZ.spec_div_gt (castm (diff_r n m) (extend_tr x (snd (diff n m)))) (castm (diff_l n m) (extend_tr y (fst (diff n m))))). case ZnZ.div_gt. intros xx yy HH. repeat rewrite spec_reduce_n. rewrite (spec_cast_l n m x), (spec_cast_r n m y). unfold to_Z; apply HH. rewrite (spec_cast_l n m x) in H1; auto. rewrite (spec_cast_r n m y) in H1; auto. rewrite (spec_cast_r n m y) in H2; auto. Qed. Theorem spec_div_gt: forall x y, [x] > [y] -> 0 < [y] -> let (q,r) := div_gt x y in [q] = [x] / [y] /\ [r] = [x] mod [y]. Proof. intros x y H1 H2; generalize (spec_div_gt_aux x y H1 H2); case div_gt. intros q r (H3, H4); split. apply (Zdiv_unique [x] [y] [q] [r]); auto. rewrite Z.mul_comm; auto. apply (Zmod_unique [x] [y] [q] [r]); auto. rewrite Z.mul_comm; auto. Qed. (** * General Division *) Definition div_eucl (x y : t) : t * t := if eqb y zero then (zero,zero) else match compare x y with | Eq => (one, zero) | Lt => (zero, x) | Gt => div_gt x y end. Theorem spec_div_eucl: forall x y, let (q,r) := div_eucl x y in ([q], [r]) = Z.div_eucl [x] [y]. Proof. intros x y. unfold div_eucl. rewrite spec_eqb, spec_compare, spec_0. case Z.eqb_spec. intros ->. rewrite spec_0. destruct [x]; auto. intros H'. assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith). clear H'. case Z.compare_spec; intros Cmp; rewrite ?spec_0, ?spec_1; intros; auto with zarith. rewrite Cmp; generalize (Z_div_same [y] (Z.lt_gt _ _ H)) (Z_mod_same [y] (Z.lt_gt _ _ H)); unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto. assert (LeLt: 0 <= [x] < [y]) by (generalize (spec_pos x); auto). generalize (Zdiv_small _ _ LeLt) (Zmod_small _ _ LeLt); unfold Z.div, Z.modulo; case Z.div_eucl; intros; subst; auto. generalize (spec_div_gt _ _ (Z.lt_gt _ _ Cmp) H); auto. unfold Z.div, Z.modulo; case Z.div_eucl; case div_gt. intros a b c d (H1, H2); subst; auto. Qed. Definition div (x y : t) : t := fst (div_eucl x y). Theorem spec_div: forall x y, [div x y] = [x] / [y]. Proof. intros x y; unfold div; generalize (spec_div_eucl x y); case div_eucl; simpl fst. intros xx yy; unfold Z.div; case Z.div_eucl; intros qq rr H; injection H; auto. Qed. (** * Modulo by a smaller number *) Definition wn_modn1 n := let op := dom_op n in let zd := ZnZ.zdigits op in let zero := ZnZ.zero in let head0 := ZnZ.head0 in let add_mul_div := ZnZ.add_mul_div in let div21 := ZnZ.div21 in let compare := ZnZ.compare in let sub := ZnZ.sub in let dmodn1 := DoubleDivn1.double_modn1 zd zero head0 add_mul_div div21 compare sub in fun m x y => reduce n (dmodn1 (S m) x y). Definition mod_gtnm n m wx wy := let mn := Max.max n m in let d := diff n m in let op := make_op mn in reduce_n mn (ZnZ.modulo_gt (castm (diff_r n m) (extend_tr wx (snd d))) (castm (diff_l n m) (extend_tr wy (fst d)))). Local Notation mod_gt_folded := (iter _ (fun n => let modulo_gt := ZnZ.modulo_gt in fun x y => reduce n (modulo_gt x y)) (fun n => let modulo_gt := ZnZ.modulo_gt in fun m x y => reduce n (modulo_gt x (DoubleBase.get_low (zeron n) (S m) y))) wn_modn1 mod_gtnm). Definition mod_gt := Eval lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron] in mod_gt_folded. Lemma mod_gt_fold : mod_gt = mod_gt_folded. Proof. lazy beta iota delta [iter dom_op dom_t reduce wn_modn1 zeron]. reflexivity. Qed. Definition spec_modn1 n := DoubleDivn1.spec_double_modn1 (ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n) ZnZ.WW ZnZ.head0 ZnZ.add_mul_div ZnZ.div21 ZnZ.compare ZnZ.sub ZnZ.to_Z ZnZ.spec_to_Z ZnZ.spec_zdigits ZnZ.spec_0 ZnZ.spec_WW ZnZ.spec_head0 ZnZ.spec_add_mul_div ZnZ.spec_div21 ZnZ.spec_compare ZnZ.spec_sub. Theorem spec_mod_gt: forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y]. Proof. intros x y. rewrite mod_gt_fold. apply spec_iter; clear x y. intros n x y H1 H2. simpl. rewrite spec_reduce. exact (ZnZ.spec_modulo_gt x y H1 H2). intros n m x y H1 H2. cbv zeta beta. rewrite spec_reduce. rewrite <- spec_mk_t in H1. rewrite <- (spec_get_endn n (S m) y x); auto with zarith. rewrite spec_mk_t. apply ZnZ.spec_modulo_gt; auto. rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H1; auto with zarith. rewrite <- (spec_get_endn n (S m) y x), !spec_mk_t in H2; auto with zarith. intros n m x y H1 H2. unfold wn_modn1. rewrite spec_reduce. unfold eval; rewrite nmake_double. apply (spec_modn1 n); auto. intros n m x y H1 H2; unfold mod_gtnm. repeat rewrite spec_reduce_n. rewrite (spec_cast_l n m x), (spec_cast_r n m y). unfold to_Z; apply ZnZ.spec_modulo_gt. rewrite (spec_cast_l n m x) in H1; auto. rewrite (spec_cast_r n m y) in H1; auto. rewrite (spec_cast_r n m y) in H2; auto. Qed. (** * General Modulo *) Definition modulo (x y : t) : t := if eqb y zero then zero else match compare x y with | Eq => zero | Lt => x | Gt => mod_gt x y end. Theorem spec_modulo: forall x y, [modulo x y] = [x] mod [y]. Proof. intros x y. unfold modulo. rewrite spec_eqb, spec_compare, spec_0. case Z.eqb_spec. intros ->; rewrite spec_0. destruct [x]; auto. intro H'. assert (H : 0 < [y]) by (generalize (spec_pos y); auto with zarith). clear H'. case Z.compare_spec; rewrite ?spec_0, ?spec_1; intros; try split; auto with zarith. rewrite H0; symmetry; apply Z_mod_same; auto with zarith. symmetry; apply Zmod_small; auto with zarith. generalize (spec_pos x); auto with zarith. apply spec_mod_gt; auto with zarith. Qed. (** * Square *) Local Notation squaren := (fun n => let square_c := ZnZ.square_c in fun x => reduce (S n) (succ_t _ (square_c x))). Definition square : t -> t := Eval red_t in iter_t squaren. Lemma square_fold : square = iter_t squaren. Proof. red_t; reflexivity. Qed. Theorem spec_square: forall x, [square x] = [x] * [x]. Proof. intros x. rewrite square_fold. destr_t x as (n,x). rewrite spec_succ_t. exact (ZnZ.spec_square_c x). Qed. (** * Square Root *) Local Notation sqrtn := (fun n => let sqrt := ZnZ.sqrt in fun x => reduce n (sqrt x)). Definition sqrt : t -> t := Eval red_t in iter_t sqrtn. Lemma sqrt_fold : sqrt = iter_t sqrtn. Proof. red_t; reflexivity. Qed. Theorem spec_sqrt_aux: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2. Proof. intros x. rewrite sqrt_fold. destr_t x as (n,x). exact (ZnZ.spec_sqrt x). Qed. Theorem spec_sqrt: forall x, [sqrt x] = Z.sqrt [x]. Proof. intros x. symmetry. apply Z.sqrt_unique. rewrite <- ! Z.pow_2_r. apply spec_sqrt_aux. Qed. (** * Power *) Fixpoint pow_pos (x:t)(p:positive) : t := match p with | xH => x | xO p => square (pow_pos x p) | xI p => mul (square (pow_pos x p)) x end. Theorem spec_pow_pos: forall x n, [pow_pos x n] = [x] ^ Zpos n. Proof. intros x n; generalize x; elim n; clear n x; simpl pow_pos. intros; rewrite spec_mul; rewrite spec_square; rewrite H. rewrite Pos2Z.inj_xI; rewrite Zpower_exp; auto with zarith. rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. rewrite Z.pow_2_r; rewrite Z.pow_1_r; auto. intros; rewrite spec_square; rewrite H. rewrite Pos2Z.inj_xO; auto with zarith. rewrite (Z.mul_comm 2); rewrite Z.pow_mul_r; auto with zarith. rewrite Z.pow_2_r; auto. intros; rewrite Z.pow_1_r; auto. Qed. Definition pow_N (x:t)(n:N) : t := match n with | BinNat.N0 => one | BinNat.Npos p => pow_pos x p end. Theorem spec_pow_N: forall x n, [pow_N x n] = [x] ^ Z.of_N n. Proof. destruct n; simpl. apply spec_1. apply spec_pow_pos. Qed. Definition pow (x y:t) : t := pow_N x (to_N y). Theorem spec_pow : forall x y, [pow x y] = [x] ^ [y]. Proof. intros. unfold pow, to_N. now rewrite spec_pow_N, Z2N.id by apply spec_pos. Qed. (** * digits Number of digits in the representation of a numbers (including head zero's). NB: This function isn't a morphism for setoid [eq]. *) Local Notation digitsn := (fun n => let digits := ZnZ.digits (dom_op n) in fun _ => digits). Definition digits : t -> positive := Eval red_t in iter_t digitsn. Lemma digits_fold : digits = iter_t digitsn. Proof. red_t; reflexivity. Qed. Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x). Proof. intros x. rewrite digits_fold. destr_t x as (n,x). exact (ZnZ.spec_to_Z x). Qed. Lemma digits_level : forall x, digits x = ZnZ.digits (dom_op (level x)). Proof. intros x. rewrite digits_fold. unfold level. destr_t x as (n,x). reflexivity. Qed. (** * Gcd *) Definition gcd_gt_body a b cont := match compare b zero with | Gt => let r := mod_gt a b in match compare r zero with | Gt => cont r (mod_gt b r) | _ => b end | _ => a end. Theorem Zspec_gcd_gt_body: forall a b cont p, [a] > [b] -> [a] < 2 ^ p -> (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] -> Zis_gcd [a1] [b1] [cont a1 b1]) -> Zis_gcd [a] [b] [gcd_gt_body a b cont]. Proof. intros a b cont p H2 H3 H4; unfold gcd_gt_body. rewrite ! spec_compare, spec_0. case Z.compare_spec. intros ->; apply Zis_gcd_0. intros HH; absurd (0 <= [b]); auto with zarith. case (spec_digits b); auto with zarith. intros H5; case Z.compare_spec. intros H6; rewrite <- (Z.mul_1_r [b]). rewrite (Z_div_mod_eq [a] [b]); auto with zarith. rewrite <- spec_mod_gt; auto with zarith. rewrite H6; rewrite Z.add_0_r. apply Zis_gcd_mult; apply Zis_gcd_1. intros; apply False_ind. case (spec_digits (mod_gt a b)); auto with zarith. intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith. apply DoubleDiv.Zis_gcd_mod; auto with zarith. rewrite <- spec_mod_gt; auto with zarith. assert (F2: [b] > [mod_gt a b]). case (Z_mod_lt [a] [b]); auto with zarith. repeat rewrite <- spec_mod_gt; auto with zarith. assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]). case (Z_mod_lt [b] [mod_gt a b]); auto with zarith. rewrite <- spec_mod_gt; auto with zarith. repeat rewrite <- spec_mod_gt; auto with zarith. apply H4; auto with zarith. apply Z.mul_lt_mono_pos_r with 2; auto with zarith. apply Z.le_lt_trans with ([b] + [mod_gt a b]); auto with zarith. apply Z.le_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith. - apply Z.add_le_mono_r. rewrite <- (Z.mul_1_l [b]) at 1. apply Z.mul_le_mono_nonneg_r; auto with zarith. change 1 with (Z.succ 0). apply Z.le_succ_l. apply Z.div_str_pos; auto with zarith. - rewrite Z.mul_comm; rewrite spec_mod_gt; auto with zarith. rewrite <- Z_div_mod_eq; auto with zarith. rewrite Z.mul_comm, <- Z.pow_succ_r, Z.sub_1_r, Z.succ_pred; auto. apply Z.le_0_sub. change 1 with (Z.succ 0). apply Z.le_succ_l. destruct p; simpl in H3; auto with zarith. Qed. Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) : t := gcd_gt_body a b (fun a b => match p with | xH => cont a b | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b end). Theorem Zspec_gcd_gt_aux: forall p n a b cont, [a] > [b] -> [a] < 2 ^ (Zpos p + n) -> (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] -> Zis_gcd [a1] [b1] [cont a1 b1]) -> Zis_gcd [a] [b] [gcd_gt_aux p cont a b]. intros p; elim p; clear p. intros p Hrec n a b cont H2 H3 H4. unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto. intros a1 b1 H6 H7. apply Hrec with (Zpos p + n); auto. replace (Zpos p + (Zpos p + n)) with (Zpos (xI p) + n - 1); auto. rewrite Pos2Z.inj_xI; ring. intros a2 b2 H9 H10. apply Hrec with n; auto. intros p Hrec n a b cont H2 H3 H4. unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto. intros a1 b1 H6 H7. apply Hrec with (Zpos p + n - 1); auto. replace (Zpos p + (Zpos p + n - 1)) with (Zpos (xO p) + n - 1); auto. rewrite Pos2Z.inj_xO; ring. intros a2 b2 H9 H10. apply Hrec with (n - 1); auto. replace (Zpos p + (n - 1)) with (Zpos p + n - 1); auto with zarith. intros a3 b3 H12 H13; apply H4; auto with zarith. apply Z.lt_le_trans with (1 := H12). apply Z.pow_le_mono_r; auto with zarith. intros n a b cont H H2 H3. simpl gcd_gt_aux. apply Zspec_gcd_gt_body with (n + 1); auto with zarith. rewrite Z.add_comm; auto. intros a1 b1 H5 H6; apply H3; auto. replace n with (n + 1 - 1); auto; try ring. Qed. Definition gcd_cont a b := match compare one b with | Eq => one | _ => a end. Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b. Theorem spec_gcd_gt: forall a b, [a] > [b] -> [gcd_gt a b] = Z.gcd [a] [b]. Proof. intros a b H2. case (spec_digits (gcd_gt a b)); intros H3 H4. case (spec_digits a); intros H5 H6. symmetry; apply Zis_gcd_gcd; auto with zarith. unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith. intros a1 a2; rewrite Z.pow_0_r. case (spec_digits a2); intros H7 H8; intros; apply False_ind; auto with zarith. Qed. Definition gcd (a b : t) : t := match compare a b with | Eq => a | Lt => gcd_gt b a | Gt => gcd_gt a b end. Theorem spec_gcd: forall a b, [gcd a b] = Z.gcd [a] [b]. Proof. intros a b. case (spec_digits a); intros H1 H2. case (spec_digits b); intros H3 H4. unfold gcd. rewrite spec_compare. case Z.compare_spec. intros HH; rewrite HH; symmetry; apply Zis_gcd_gcd; auto. apply Zis_gcd_refl. intros; transitivity (Z.gcd [b] [a]). apply spec_gcd_gt; auto with zarith. apply Zis_gcd_gcd; auto with zarith. apply Z.gcd_nonneg. apply Zis_gcd_sym; apply Zgcd_is_gcd. intros; apply spec_gcd_gt; auto with zarith. Qed. (** * Parity test *) Definition even : t -> bool := Eval red_t in iter_t (fun n x => ZnZ.is_even x). Definition odd x := negb (even x). Lemma even_fold : even = iter_t (fun n x => ZnZ.is_even x). Proof. red_t; reflexivity. Qed. Theorem spec_even_aux: forall x, if even x then [x] mod 2 = 0 else [x] mod 2 = 1. Proof. intros x. rewrite even_fold. destr_t x as (n,x). exact (ZnZ.spec_is_even x). Qed. Theorem spec_even: forall x, even x = Z.even [x]. Proof. intros x. assert (H := spec_even_aux x). symmetry. rewrite (Z.div_mod [x] 2); auto with zarith. destruct (even x); rewrite H, ?Z.add_0_r. rewrite Zeven_bool_iff. apply Zeven_2p. apply not_true_is_false. rewrite Zeven_bool_iff. apply Zodd_not_Zeven. apply Zodd_2p_plus_1. Qed. Theorem spec_odd: forall x, odd x = Z.odd [x]. Proof. intros x. unfold odd. assert (H := spec_even_aux x). symmetry. rewrite (Z.div_mod [x] 2); auto with zarith. destruct (even x); rewrite H, ?Z.add_0_r; simpl negb. apply not_true_is_false. rewrite Zodd_bool_iff. apply Zeven_not_Zodd. apply Zeven_2p. apply Zodd_bool_iff. apply Zodd_2p_plus_1. Qed. (** * Conversion *) Definition pheight p := Peano.pred (Pos.to_nat (get_height (ZnZ.digits (dom_op 0)) (plength p))). Theorem pheight_correct: forall p, Zpos p < 2 ^ (Zpos (ZnZ.digits (dom_op 0)) * 2 ^ (Z.of_nat (pheight p))). Proof. intros p; unfold pheight. rewrite Nat2Z.inj_pred by apply Pos2Nat.is_pos. rewrite positive_nat_Z. rewrite <- Z.sub_1_r. assert (F2:= (get_height_correct (ZnZ.digits (dom_op 0)) (plength p))). apply Z.lt_le_trans with (Zpos (Pos.succ p)). rewrite Pos2Z.inj_succ; auto with zarith. apply Z.le_trans with (1 := plength_pred_correct (Pos.succ p)). rewrite Pos.pred_succ. apply Z.pow_le_mono_r; auto with zarith. Qed. Definition of_pos (x:positive) : t := let n := pheight x in reduce n (snd (ZnZ.of_pos x)). Theorem spec_of_pos: forall x, [of_pos x] = Zpos x. Proof. intros x; unfold of_pos. rewrite spec_reduce. simpl. apply ZnZ.of_pos_correct. unfold base. apply Z.lt_le_trans with (1 := pheight_correct x). apply Z.pow_le_mono_r; auto with zarith. rewrite (digits_dom_op (_ _)), Pshiftl_nat_Zpower. auto with zarith. Qed. Definition of_N (x:N) : t := match x with | BinNat.N0 => zero | Npos p => of_pos p end. Theorem spec_of_N: forall x, [of_N x] = Z.of_N x. Proof. intros x; case x. simpl of_N. exact spec_0. intros p; exact (spec_of_pos p). Qed. (** * [head0] and [tail0] Number of zero at the beginning and at the end of the representation of the number. NB: these functions are not morphism for setoid [eq]. *) Local Notation head0n := (fun n => let head0 := ZnZ.head0 in fun x => reduce n (head0 x)). Definition head0 : t -> t := Eval red_t in iter_t head0n. Lemma head0_fold : head0 = iter_t head0n. Proof. red_t; reflexivity. Qed. Theorem spec_head00: forall x, [x] = 0 -> [head0 x] = Zpos (digits x). Proof. intros x. rewrite head0_fold, digits_fold. destr_t x as (n,x). exact (ZnZ.spec_head00 x). Qed. Lemma pow2_pos_minus_1 : forall z, 0 2^(z-1) = 2^z / 2. Proof. intros. apply Zdiv_unique with 0; auto with zarith. change 2 with (2^1) at 2. rewrite <- Zpower_exp; auto with zarith. rewrite Z.add_0_r. f_equal. auto with zarith. Qed. Theorem spec_head0: forall x, 0 < [x] -> 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x). Proof. intros x. rewrite pow2_pos_minus_1 by (red; auto). rewrite head0_fold, digits_fold. destr_t x as (n,x). exact (ZnZ.spec_head0 x). Qed. Local Notation tail0n := (fun n => let tail0 := ZnZ.tail0 in fun x => reduce n (tail0 x)). Definition tail0 : t -> t := Eval red_t in iter_t tail0n. Lemma tail0_fold : tail0 = iter_t tail0n. Proof. red_t; reflexivity. Qed. Theorem spec_tail00: forall x, [x] = 0 -> [tail0 x] = Zpos (digits x). Proof. intros x. rewrite tail0_fold, digits_fold. destr_t x as (n,x). exact (ZnZ.spec_tail00 x). Qed. Theorem spec_tail0: forall x, 0 < [x] -> exists y, 0 <= y /\ [x] = (2 * y + 1) * 2 ^ [tail0 x]. Proof. intros x. rewrite tail0_fold. destr_t x as (n,x). exact (ZnZ.spec_tail0 x). Qed. (** * [Ndigits] Same as [digits] but encoded using large integers NB: this function is not a morphism for setoid [eq]. *) Local Notation Ndigitsn := (fun n => let d := reduce n (ZnZ.zdigits (dom_op n)) in fun _ => d). Definition Ndigits : t -> t := Eval red_t in iter_t Ndigitsn. Lemma Ndigits_fold : Ndigits = iter_t Ndigitsn. Proof. red_t; reflexivity. Qed. Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x). Proof. intros x. rewrite Ndigits_fold, digits_fold. destr_t x as (n,x). apply ZnZ.spec_zdigits. Qed. (** * Binary logarithm *) Local Notation log2n := (fun n => let op := dom_op n in let zdigits := ZnZ.zdigits op in let head0 := ZnZ.head0 in let sub_carry := ZnZ.sub_carry in fun x => reduce n (sub_carry zdigits (head0 x))). Definition log2 : t -> t := Eval red_t in let log2 := iter_t log2n in fun x => if eqb x zero then zero else log2 x. Lemma log2_fold : log2 = fun x => if eqb x zero then zero else iter_t log2n x. Proof. red_t; reflexivity. Qed. Lemma spec_log2_0 : forall x, [x] = 0 -> [log2 x] = 0. Proof. intros x H. rewrite log2_fold. rewrite spec_eqb, H. rewrite spec_0. simpl. exact spec_0. Qed. Lemma head0_zdigits : forall n (x : dom_t n), 0 < ZnZ.to_Z x -> ZnZ.to_Z (ZnZ.head0 x) < ZnZ.to_Z (ZnZ.zdigits (dom_op n)). Proof. intros n x H. destruct (ZnZ.spec_head0 x H) as (_,H0). intros. assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)). assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). unfold base in *. rewrite ZnZ.spec_zdigits in H2 |- *. set (h := ZnZ.to_Z (ZnZ.head0 x)) in *; clearbody h. set (d := ZnZ.digits (dom_op n)) in *; clearbody d. destruct (Z_lt_le_dec h (Zpos d)); auto. exfalso. assert (1 * 2^Zpos d <= ZnZ.to_Z x * 2^h). apply Z.mul_le_mono_nonneg; auto with zarith. apply Z.pow_le_mono_r; auto with zarith. rewrite Z.mul_comm in H0. auto with zarith. Qed. Lemma spec_log2_pos : forall x, [x]<>0 -> 2^[log2 x] <= [x] < 2^([log2 x]+1). Proof. intros x H. rewrite log2_fold. rewrite spec_eqb. rewrite spec_0. case Z.eqb_spec. auto with zarith. clear H. destr_t x as (n,x). intros H. rewrite ZnZ.spec_sub_carry. assert (H0 := ZnZ.spec_to_Z x). assert (H1 := ZnZ.spec_to_Z (ZnZ.head0 x)). assert (H2 := ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). assert (H3 := head0_zdigits n x). rewrite Zmod_small by auto with zarith. rewrite Z.sub_simpl_r. rewrite (Z.mul_lt_mono_pos_l (2^(ZnZ.to_Z (ZnZ.head0 x)))); auto with zarith. rewrite (Z.mul_le_mono_pos_l _ _ (2^(ZnZ.to_Z (ZnZ.head0 x)))); auto with zarith. rewrite <- 2 Zpower_exp; auto with zarith. rewrite !Z.add_sub_assoc, !Z.add_simpl_l. rewrite ZnZ.spec_zdigits. rewrite pow2_pos_minus_1 by (red; auto). apply ZnZ.spec_head0; auto with zarith. Qed. Lemma spec_log2 : forall x, [log2 x] = Z.log2 [x]. Proof. intros. destruct (Z_lt_ge_dec 0 [x]). symmetry. apply Z.log2_unique. apply spec_pos. apply spec_log2_pos. intro EQ; rewrite EQ in *; auto with zarith. rewrite spec_log2_0. rewrite Z.log2_nonpos; auto with zarith. generalize (spec_pos x); auto with zarith. Qed. Lemma log2_digits_head0 : forall x, 0 < [x] -> [log2 x] = Zpos (digits x) - [head0 x] - 1. Proof. intros. rewrite log2_fold. rewrite spec_eqb. rewrite spec_0. case Z.eqb_spec. auto with zarith. intros _. revert H. rewrite digits_fold, head0_fold. destr_t x as (n,x). rewrite ZnZ.spec_sub_carry. intros. generalize (head0_zdigits n x H). generalize (ZnZ.spec_to_Z (ZnZ.head0 x)). generalize (ZnZ.spec_to_Z (ZnZ.zdigits (dom_op n))). rewrite ZnZ.spec_zdigits. intros. apply Zmod_small. auto with zarith. Qed. (** * Right shift *) Local Notation shiftrn := (fun n => let op := dom_op n in let zdigits := ZnZ.zdigits op in let sub_c := ZnZ.sub_c in let add_mul_div := ZnZ.add_mul_div in let zzero := ZnZ.zero in fun x p => match sub_c zdigits p with | C0 d => reduce n (add_mul_div d zzero x) | C1 _ => zero end). Definition shiftr : t -> t -> t := Eval red_t in same_level shiftrn. Lemma shiftr_fold : shiftr = same_level shiftrn. Proof. red_t; reflexivity. Qed. Lemma div_pow2_bound :forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z. Proof. intros x y z HH HH1 HH2. split; auto with zarith. apply Z.le_lt_trans with (2 := HH2); auto with zarith. apply Zdiv_le_upper_bound; auto with zarith. pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith. apply Z.mul_le_mono_nonneg_l; auto. apply Z.pow_le_mono_r; auto with zarith. rewrite Z.pow_0_r; ring. Qed. Theorem spec_shiftr_pow2 : forall x n, [shiftr x n] = [x] / 2 ^ [n]. Proof. intros x y. rewrite shiftr_fold. apply spec_same_level. clear x y. intros n x p. simpl. assert (Hx := ZnZ.spec_to_Z x). assert (Hy := ZnZ.spec_to_Z p). generalize (ZnZ.spec_sub_c (ZnZ.zdigits (dom_op n)) p). case ZnZ.sub_c; intros d H; unfold interp_carry in *; simpl. (** Subtraction without underflow : [ p <= digits ] *) rewrite spec_reduce. rewrite ZnZ.spec_zdigits in H. rewrite ZnZ.spec_add_mul_div by auto with zarith. rewrite ZnZ.spec_0, Z.mul_0_l, Z.add_0_l. rewrite Zmod_small. f_equal. f_equal. auto with zarith. split. auto with zarith. apply div_pow2_bound; auto with zarith. (** Subtraction with underflow : [ digits < p ] *) rewrite ZnZ.spec_0. symmetry. apply Zdiv_small. split; auto with zarith. apply Z.lt_le_trans with (base (ZnZ.digits (dom_op n))); auto with zarith. unfold base. apply Z.pow_le_mono_r; auto with zarith. rewrite ZnZ.spec_zdigits in H. generalize (ZnZ.spec_to_Z d); auto with zarith. Qed. Lemma spec_shiftr: forall x p, [shiftr x p] = Z.shiftr [x] [p]. Proof. intros. now rewrite spec_shiftr_pow2, Z.shiftr_div_pow2 by apply spec_pos. Qed. (** * Left shift *) (** First an unsafe version, working correctly only if the representation is large enough *) Local Notation unsafe_shiftln := (fun n => let op := dom_op n in let add_mul_div := ZnZ.add_mul_div in let zero := ZnZ.zero in fun x p => reduce n (add_mul_div p x zero)). Definition unsafe_shiftl : t -> t -> t := Eval red_t in same_level unsafe_shiftln. Lemma unsafe_shiftl_fold : unsafe_shiftl = same_level unsafe_shiftln. Proof. red_t; reflexivity. Qed. Theorem spec_unsafe_shiftl_aux : forall x p K, 0 <= K -> [x] < 2^K -> [p] + K <= Zpos (digits x) -> [unsafe_shiftl x p] = [x] * 2 ^ [p]. Proof. intros x p. rewrite unsafe_shiftl_fold. rewrite digits_level. apply spec_same_level_dep. intros n m z z' r LE H K HK H1 H2. apply (H K); auto. transitivity (Zpos (ZnZ.digits (dom_op n))); auto. apply digits_dom_op_incr; auto. clear x p. intros n x p K HK Hx Hp. simpl. rewrite spec_reduce. destruct (ZnZ.spec_to_Z x). destruct (ZnZ.spec_to_Z p). rewrite ZnZ.spec_add_mul_div by (omega with *). rewrite ZnZ.spec_0, Zdiv_0_l, Z.add_0_r. apply Zmod_small. unfold base. split; auto with zarith. rewrite Z.mul_comm. apply Z.lt_le_trans with (2^(ZnZ.to_Z p + K)). rewrite Zpower_exp; auto with zarith. apply Z.mul_lt_mono_pos_l; auto with zarith. apply Z.pow_le_mono_r; auto with zarith. Qed. Theorem spec_unsafe_shiftl: forall x p, [p] <= [head0 x] -> [unsafe_shiftl x p] = [x] * 2 ^ [p]. Proof. intros. destruct (Z.eq_dec [x] 0) as [EQ|NEQ]. (* [x] = 0 *) apply spec_unsafe_shiftl_aux with 0; auto with zarith. now rewrite EQ. rewrite spec_head00 in *; auto with zarith. (* [x] <> 0 *) apply spec_unsafe_shiftl_aux with ([log2 x] + 1); auto with zarith. generalize (spec_pos (log2 x)); auto with zarith. destruct (spec_log2_pos x); auto with zarith. rewrite log2_digits_head0; auto with zarith. generalize (spec_pos x); auto with zarith. Qed. (** Then we define a function doubling the size of the representation but without changing the value of the number. *) Local Notation double_size_n := (fun n => let zero := ZnZ.zero in fun x => mk_t_S n (WW zero x)). Definition double_size : t -> t := Eval red_t in iter_t double_size_n. Lemma double_size_fold : double_size = iter_t double_size_n. Proof. red_t; reflexivity. Qed. Lemma double_size_level : forall x, level (double_size x) = S (level x). Proof. intros x. rewrite double_size_fold; unfold level at 2. destr_t x as (n,x). apply mk_t_S_level. Qed. Theorem spec_double_size_digits: forall x, Zpos (digits (double_size x)) = 2 * (Zpos (digits x)). Proof. intros x. rewrite ! digits_level, double_size_level. rewrite 2 digits_dom_op, 2 Pshiftl_nat_Zpower, Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith. ring. Qed. Theorem spec_double_size: forall x, [double_size x] = [x]. Proof. intros x. rewrite double_size_fold. destr_t x as (n,x). rewrite spec_mk_t_S. simpl. rewrite ZnZ.spec_0. auto with zarith. Qed. Theorem spec_double_size_head0: forall x, 2 * [head0 x] <= [head0 (double_size x)]. Proof. intros x. assert (F1:= spec_pos (head0 x)). assert (F2: 0 < Zpos (digits x)). red; auto. assert (HH := spec_pos x). Z.le_elim HH. generalize HH; rewrite <- (spec_double_size x); intros HH1. case (spec_head0 x HH); intros _ HH2. case (spec_head0 _ HH1). rewrite (spec_double_size x); rewrite (spec_double_size_digits x). intros HH3 _. case (Z.le_gt_cases ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4. absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto. apply Z.le_ngt. apply Z.mul_le_mono_nonneg_r; auto with zarith. apply Z.pow_le_mono_r; auto; auto with zarith. assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)). { apply Z.le_succ_l in HH. change (1 <= [x]) in HH. Z.le_elim HH. - apply Z.mul_le_mono_pos_r with (2 ^ 1); auto with zarith. rewrite <- (fun x y z => Z.pow_add_r x (y - z)); auto with zarith. rewrite Z.sub_add. apply Z.le_trans with (2 := Z.lt_le_incl _ _ HH2). apply Z.mul_le_mono_nonneg_l; auto with zarith. rewrite Z.pow_1_r; auto with zarith. - apply Z.pow_le_mono_r; auto with zarith. case (Z.le_gt_cases (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6. absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith. rewrite <- HH; rewrite Z.mul_1_r. apply Z.pow_le_mono_r; auto with zarith. } rewrite (Z.mul_comm 2). rewrite Z.pow_mul_r; auto with zarith. rewrite Z.pow_2_r. apply Z.lt_le_trans with (2 := HH3). rewrite <- Z.mul_assoc. replace (2 * Zpos (digits x) - 1) with ((Zpos (digits x) - 1) + (Zpos (digits x))). rewrite Zpower_exp; auto with zarith. apply Zmult_lt_compat2; auto with zarith. split; auto with zarith. apply Z.mul_pos_pos; auto with zarith. rewrite Pos2Z.inj_xO; ring. apply Z.lt_le_incl; auto. repeat rewrite spec_head00; auto. rewrite spec_double_size_digits. rewrite Pos2Z.inj_xO; auto with zarith. rewrite spec_double_size; auto. Qed. Theorem spec_double_size_head0_pos: forall x, 0 < [head0 (double_size x)]. Proof. intros x. assert (F := Pos2Z.is_pos (digits x)). assert (F0 := spec_pos (head0 (double_size x))). Z.le_elim F0; auto. assert (F1 := spec_pos (head0 x)). Z.le_elim F1. apply Z.lt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith. assert (F3 := spec_pos x). Z.le_elim F3. generalize F3; rewrite <- (spec_double_size x); intros F4. absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))). { apply Z.le_ngt. apply Z.pow_le_mono_r; auto with zarith. rewrite Pos2Z.inj_xO; auto with zarith. } case (spec_head0 x F3). rewrite <- F1; rewrite Z.pow_0_r; rewrite Z.mul_1_l; intros _ HH. apply Z.le_lt_trans with (2 := HH). case (spec_head0 _ F4). rewrite (spec_double_size x); rewrite (spec_double_size_digits x). rewrite <- F0; rewrite Z.pow_0_r; rewrite Z.mul_1_l; auto. generalize F1; rewrite (spec_head00 _ (eq_sym F3)); auto with zarith. Qed. (** Finally we iterate [double_size] enough before [unsafe_shiftl] in order to get a fully correct [shiftl]. *) Definition shiftl_aux_body cont x n := match compare n (head0 x) with Gt => cont (double_size x) n | _ => unsafe_shiftl x n end. Theorem spec_shiftl_aux_body: forall n x p cont, 2^ Zpos p <= [head0 x] -> (forall x, 2 ^ (Zpos p + 1) <= [head0 x]-> [cont x n] = [x] * 2 ^ [n]) -> [shiftl_aux_body cont x n] = [x] * 2 ^ [n]. Proof. intros n x p cont H1 H2; unfold shiftl_aux_body. rewrite spec_compare; case Z.compare_spec; intros H. apply spec_unsafe_shiftl; auto with zarith. apply spec_unsafe_shiftl; auto with zarith. rewrite H2. rewrite spec_double_size; auto. rewrite Z.add_comm; rewrite Zpower_exp; auto with zarith. apply Z.le_trans with (2 := spec_double_size_head0 x). rewrite Z.pow_1_r; apply Z.mul_le_mono_nonneg_l; auto with zarith. Qed. Fixpoint shiftl_aux p cont x n := shiftl_aux_body (fun x n => match p with | xH => cont x n | xO p => shiftl_aux p (shiftl_aux p cont) x n | xI p => shiftl_aux p (shiftl_aux p cont) x n end) x n. Theorem spec_shiftl_aux: forall p q x n cont, 2 ^ (Zpos q) <= [head0 x] -> (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] -> [cont x n] = [x] * 2 ^ [n]) -> [shiftl_aux p cont x n] = [x] * 2 ^ [n]. Proof. intros p; elim p; unfold shiftl_aux; fold shiftl_aux; clear p. intros p Hrec q x n cont H1 H2. apply spec_shiftl_aux_body with (q); auto. intros x1 H3; apply Hrec with (q + 1)%positive; auto. intros x2 H4; apply Hrec with (p + q + 1)%positive; auto. rewrite <- Pos.add_assoc. rewrite Pos2Z.inj_add; auto. intros x3 H5; apply H2. rewrite Pos2Z.inj_xI. replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1)); auto. rewrite !Pos2Z.inj_add; ring. intros p Hrec q n x cont H1 H2. apply spec_shiftl_aux_body with (q); auto. intros x1 H3; apply Hrec with (q); auto. apply Z.le_trans with (2 := H3); auto with zarith. apply Z.pow_le_mono_r; auto with zarith. intros x2 H4; apply Hrec with (p + q)%positive; auto. intros x3 H5; apply H2. rewrite (Pos2Z.inj_xO p). replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q)); auto. rewrite Pos2Z.inj_add; ring. intros q n x cont H1 H2. apply spec_shiftl_aux_body with (q); auto. rewrite Z.add_comm; auto. Qed. Definition shiftl x n := shiftl_aux_body (shiftl_aux_body (shiftl_aux (digits n) unsafe_shiftl)) x n. Theorem spec_shiftl_pow2 : forall x n, [shiftl x n] = [x] * 2 ^ [n]. Proof. intros x n; unfold shiftl, shiftl_aux_body. rewrite spec_compare; case Z.compare_spec; intros H. apply spec_unsafe_shiftl; auto with zarith. apply spec_unsafe_shiftl; auto with zarith. rewrite <- (spec_double_size x). rewrite spec_compare; case Z.compare_spec; intros H1. apply spec_unsafe_shiftl; auto with zarith. apply spec_unsafe_shiftl; auto with zarith. rewrite <- (spec_double_size (double_size x)). apply spec_shiftl_aux with 1%positive. apply Z.le_trans with (2 := spec_double_size_head0 (double_size x)). replace (2 ^ 1) with (2 * 1). apply Z.mul_le_mono_nonneg_l; auto with zarith. generalize (spec_double_size_head0_pos x); auto with zarith. rewrite Z.pow_1_r; ring. intros x1 H2; apply spec_unsafe_shiftl. apply Z.le_trans with (2 := H2). apply Z.le_trans with (2 ^ Zpos (digits n)); auto with zarith. case (spec_digits n); auto with zarith. apply Z.pow_le_mono_r; auto with zarith. Qed. Lemma spec_shiftl: forall x p, [shiftl x p] = Z.shiftl [x] [p]. Proof. intros. now rewrite spec_shiftl_pow2, Z.shiftl_mul_pow2 by apply spec_pos. Qed. (** Other bitwise operations *) Definition testbit x n := odd (shiftr x n). Lemma spec_testbit: forall x p, testbit x p = Z.testbit [x] [p]. Proof. intros. unfold testbit. symmetry. rewrite spec_odd, spec_shiftr. apply Z.testbit_odd. Qed. Definition div2 x := shiftr x one. Lemma spec_div2: forall x, [div2 x] = Z.div2 [x]. Proof. intros. unfold div2. symmetry. rewrite spec_shiftr, spec_1. apply Z.div2_spec. Qed. Local Notation lorn := (fun n => let op := dom_op n in let lor := ZnZ.lor in fun x y => reduce n (lor x y)). Definition lor : t -> t -> t := Eval red_t in same_level lorn. Lemma lor_fold : lor = same_level lorn. Proof. red_t; reflexivity. Qed. Theorem spec_lor x y : [lor x y] = Z.lor [x] [y]. Proof. rewrite lor_fold. apply spec_same_level; clear x y. intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lor. Qed. Local Notation landn := (fun n => let op := dom_op n in let land := ZnZ.land in fun x y => reduce n (land x y)). Definition land : t -> t -> t := Eval red_t in same_level landn. Lemma land_fold : land = same_level landn. Proof. red_t; reflexivity. Qed. Theorem spec_land x y : [land x y] = Z.land [x] [y]. Proof. rewrite land_fold. apply spec_same_level; clear x y. intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_land. Qed. Local Notation lxorn := (fun n => let op := dom_op n in let lxor := ZnZ.lxor in fun x y => reduce n (lxor x y)). Definition lxor : t -> t -> t := Eval red_t in same_level lxorn. Lemma lxor_fold : lxor = same_level lxorn. Proof. red_t; reflexivity. Qed. Theorem spec_lxor x y : [lxor x y] = Z.lxor [x] [y]. Proof. rewrite lxor_fold. apply spec_same_level; clear x y. intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lxor. Qed. Local Notation ldiffn := (fun n => let op := dom_op n in let lxor := ZnZ.lxor in let land := ZnZ.land in let m1 := ZnZ.minus_one in fun x y => reduce n (land x (lxor y m1))). Definition ldiff : t -> t -> t := Eval red_t in same_level ldiffn. Lemma ldiff_fold : ldiff = same_level ldiffn. Proof. red_t; reflexivity. Qed. Lemma ldiff_alt x y p : 0 <= x < 2^p -> 0 <= y < 2^p -> Z.ldiff x y = Z.land x (Z.lxor y (2^p - 1)). Proof. intros (Hx,Hx') (Hy,Hy'). destruct p as [|p|p]. - simpl in *; replace x with 0; replace y with 0; auto with zarith. - rewrite <- Z.shiftl_1_l. change (_ - 1) with (Z.ones (Z.pos p)). rewrite <- Z.ldiff_ones_l_low; trivial. rewrite !Z.ldiff_land, Z.land_assoc. f_equal. rewrite Z.land_ones; try easy. symmetry. apply Z.mod_small; now split. Z.le_elim Hy. + now apply Z.log2_lt_pow2. + now subst. - simpl in *; omega. Qed. Theorem spec_ldiff x y : [ldiff x y] = Z.ldiff [x] [y]. Proof. rewrite ldiff_fold. apply spec_same_level; clear x y. intros n x y. simpl. rewrite spec_reduce. rewrite ZnZ.spec_land, ZnZ.spec_lxor, ZnZ.spec_m1. symmetry. apply ldiff_alt; apply ZnZ.spec_to_Z. Qed. End Make.