(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* forall m1 m2 : N, m1 == m2 -> n1 - m1 == n2 - m2. Proof NZsub_wd. Theorem sub_0_r : forall n : N, n - 0 == n. Proof NZsub_0_r. Theorem sub_succ_r : forall n m : N, n - (S m) == P (n - m). Proof NZsub_succ_r. Theorem sub_1_r : forall n : N, n - 1 == P n. Proof. intro n; rewrite sub_succ_r; now rewrite sub_0_r. Qed. Theorem sub_0_l : forall n : N, 0 - n == 0. Proof. induct n. apply sub_0_r. intros n IH; rewrite sub_succ_r; rewrite IH. now apply pred_0. Qed. Theorem sub_succ : forall n m : N, S n - S m == n - m. Proof. intro n; induct m. rewrite sub_succ_r. do 2 rewrite sub_0_r. now rewrite pred_succ. intros m IH. rewrite sub_succ_r. rewrite IH. now rewrite sub_succ_r. Qed. Theorem sub_diag : forall n : N, n - n == 0. Proof. induct n. apply sub_0_r. intros n IH; rewrite sub_succ; now rewrite IH. Qed. Theorem sub_gt : forall n m : N, n > m -> n - m ~= 0. Proof. intros n m H; elim H using lt_ind_rel; clear n m H. solve_relation_wd. intro; rewrite sub_0_r; apply neq_succ_0. intros; now rewrite sub_succ. Qed. Theorem add_sub_assoc : forall n m p : N, p <= m -> n + (m - p) == (n + m) - p. Proof. intros n m p; induct p. intro; now do 2 rewrite sub_0_r. intros p IH H. do 2 rewrite sub_succ_r. rewrite <- IH by (apply lt_le_incl; now apply -> le_succ_l). rewrite add_pred_r by (apply sub_gt; now apply -> le_succ_l). reflexivity. Qed. Theorem sub_succ_l : forall n m : N, n <= m -> S m - n == S (m - n). Proof. intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)). symmetry; now apply add_sub_assoc. Qed. Theorem add_sub : forall n m : N, (n + m) - m == n. Proof. intros n m. rewrite <- add_sub_assoc by (apply le_refl). rewrite sub_diag; now rewrite add_0_r. Qed. Theorem sub_add : forall n m : N, n <= m -> (m - n) + n == m. Proof. intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption. rewrite add_comm. apply add_sub. Qed. Theorem add_sub_eq_l : forall n m p : N, m + p == n -> n - m == p. Proof. intros n m p H. symmetry. assert (H1 : m + p - m == n - m) by now rewrite H. rewrite add_comm in H1. now rewrite add_sub in H1. Qed. Theorem add_sub_eq_r : forall n m p : N, m + p == n -> n - p == m. Proof. intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l. Qed. (* This could be proved by adding m to both sides. Then the proof would use add_sub_assoc and sub_0_le, which is proven below. *) Theorem add_sub_eq_nz : forall n m p : N, p ~= 0 -> n - m == p -> m + p == n. Proof. intros n m p H; double_induct n m. intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H. intro n; rewrite sub_0_r; now rewrite add_0_l. intros n m IH H1. rewrite sub_succ in H1. apply IH in H1. rewrite add_succ_l; now rewrite H1. Qed. Theorem sub_add_distr : forall n m p : N, n - (m + p) == (n - m) - p. Proof. intros n m; induct p. rewrite add_0_r; now rewrite sub_0_r. intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH. Qed. Theorem add_sub_swap : forall n m p : N, p <= n -> n + m - p == n - p + m. Proof. intros n m p H. rewrite (add_comm n m). rewrite <- add_sub_assoc by assumption. now rewrite (add_comm m (n - p)). Qed. (** Sub and order *) Theorem le_sub_l : forall n m : N, n - m <= n. Proof. intro n; induct m. rewrite sub_0_r; now apply eq_le_incl. intros m IH. rewrite sub_succ_r. apply le_trans with (n - m); [apply le_pred_l | assumption]. Qed. Theorem sub_0_le : forall n m : N, n - m == 0 <-> n <= m. Proof. double_induct n m. intro m; split; intro; [apply le_0_l | apply sub_0_l]. intro m; rewrite sub_0_r; split; intro H; [false_hyp H neq_succ_0 | false_hyp H nle_succ_0]. intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ. Qed. (** Sub and mul *) Theorem mul_pred_r : forall n m : N, n * (P m) == n * m - n. Proof. intros n m; cases m. now rewrite pred_0, mul_0_r, sub_0_l. intro m; rewrite pred_succ, mul_succ_r, <- add_sub_assoc. now rewrite sub_diag, add_0_r. now apply eq_le_incl. Qed. Theorem mul_sub_distr_r : forall n m p : N, (n - m) * p == n * p - m * p. Proof. intros n m p; induct n. now rewrite sub_0_l, mul_0_l, sub_0_l. intros n IH. destruct (le_gt_cases m n) as [H | H]. rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l. rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p). rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r. now apply <- add_cancel_l. assert (H1 : S n <= m); [now apply <- le_succ_l |]. setoid_replace (S n - m) with 0 by now apply <- sub_0_le. setoid_replace ((S n * p) - m * p) with 0 by (apply <- sub_0_le; now apply mul_le_mono_r). apply mul_0_l. Qed. Theorem mul_sub_distr_l : forall n m p : N, p * (n - m) == p * n - p * m. Proof. intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m). apply mul_sub_distr_r. Qed. End NSubPropFunct.