(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* m -> n - m ~= 0. Proof. intros n m H; elim H using lt_ind_rel; clear n m H. solve_proper. intro; rewrite sub_0_r; apply neq_succ_0. intros; now rewrite sub_succ. Qed. Theorem add_sub_assoc : forall n m p, p <= m -> n + (m - p) == (n + m) - p. Proof. intros n m p; induct p. intro; now do 2 rewrite sub_0_r. intros p IH H. do 2 rewrite sub_succ_r. rewrite <- IH by (apply lt_le_incl; now apply le_succ_l). rewrite add_pred_r by (apply sub_gt; now apply le_succ_l). reflexivity. Qed. Theorem sub_succ_l : forall n m, n <= m -> S m - n == S (m - n). Proof. intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)). symmetry; now apply add_sub_assoc. Qed. Theorem add_sub : forall n m, (n + m) - m == n. Proof. intros n m. rewrite <- add_sub_assoc by (apply le_refl). rewrite sub_diag; now rewrite add_0_r. Qed. Theorem sub_add : forall n m, n <= m -> (m - n) + n == m. Proof. intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption. rewrite add_comm. apply add_sub. Qed. Theorem add_sub_eq_l : forall n m p, m + p == n -> n - m == p. Proof. intros n m p H. symmetry. assert (H1 : m + p - m == n - m) by now rewrite H. rewrite add_comm in H1. now rewrite add_sub in H1. Qed. Theorem add_sub_eq_r : forall n m p, m + p == n -> n - p == m. Proof. intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l. Qed. (* This could be proved by adding m to both sides. Then the proof would use add_sub_assoc and sub_0_le, which is proven below. *) Theorem add_sub_eq_nz : forall n m p, p ~= 0 -> n - m == p -> m + p == n. Proof. intros n m p H; double_induct n m. intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H. intro n; rewrite sub_0_r; now rewrite add_0_l. intros n m IH H1. rewrite sub_succ in H1. apply IH in H1. rewrite add_succ_l; now rewrite H1. Qed. Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p. Proof. intros n m; induct p. rewrite add_0_r; now rewrite sub_0_r. intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH. Qed. Theorem add_sub_swap : forall n m p, p <= n -> n + m - p == n - p + m. Proof. intros n m p H. rewrite (add_comm n m). rewrite <- add_sub_assoc by assumption. now rewrite (add_comm m (n - p)). Qed. (** Sub and order *) Theorem le_sub_l : forall n m, n - m <= n. Proof. intro n; induct m. rewrite sub_0_r; now apply eq_le_incl. intros m IH. rewrite sub_succ_r. apply le_trans with (n - m); [apply le_pred_l | assumption]. Qed. Theorem sub_0_le : forall n m, n - m == 0 <-> n <= m. Proof. double_induct n m. intro m; split; intro; [apply le_0_l | apply sub_0_l]. intro m; rewrite sub_0_r; split; intro H; [false_hyp H neq_succ_0 | false_hyp H nle_succ_0]. intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ. Qed. Theorem sub_add_le : forall n m, n <= n - m + m. Proof. intros. destruct (le_ge_cases n m) as [LE|GE]. rewrite <- sub_0_le in LE. rewrite LE; nzsimpl. now rewrite <- sub_0_le. rewrite sub_add by assumption. apply le_refl. Qed. Theorem le_sub_le_add_r : forall n m p, n - p <= m <-> n <= m + p. Proof. intros n m p. split; intros LE. rewrite (add_le_mono_r _ _ p) in LE. apply le_trans with (n-p+p); auto using sub_add_le. destruct (le_ge_cases n p) as [LE'|GE]. rewrite <- sub_0_le in LE'. rewrite LE'. apply le_0_l. rewrite (add_le_mono_r _ _ p). now rewrite sub_add. Qed. Theorem le_sub_le_add_l : forall n m p, n - m <= p <-> n <= m + p. Proof. intros n m p. rewrite add_comm; apply le_sub_le_add_r. Qed. Theorem lt_sub_lt_add_r : forall n m p, n - p < m -> n < m + p. Proof. intros n m p LT. rewrite (add_lt_mono_r _ _ p) in LT. apply le_lt_trans with (n-p+p); auto using sub_add_le. Qed. (** Unfortunately, we do not have [n < m + p -> n - p < m]. For instance [1<0+2] but not [1-2<0]. *) Theorem lt_sub_lt_add_l : forall n m p, n - m < p -> n < m + p. Proof. intros n m p. rewrite add_comm; apply lt_sub_lt_add_r. Qed. Theorem le_add_le_sub_r : forall n m p, n + p <= m -> n <= m - p. Proof. intros n m p LE. apply (add_le_mono_r _ _ p). rewrite sub_add. assumption. apply le_trans with (n+p); trivial. rewrite <- (add_0_l p) at 1. rewrite <- add_le_mono_r. apply le_0_l. Qed. (** Unfortunately, we do not have [n <= m - p -> n + p <= m]. For instance [0<=1-2] but not [2+0<=1]. *) Theorem le_add_le_sub_l : forall n m p, n + p <= m -> p <= m - n. Proof. intros n m p. rewrite add_comm; apply le_add_le_sub_r. Qed. Theorem lt_add_lt_sub_r : forall n m p, n + p < m <-> n < m - p. Proof. intros n m p. destruct (le_ge_cases p m) as [LE|GE]. rewrite <- (sub_add p m) at 1 by assumption. now rewrite <- add_lt_mono_r. assert (GE' := GE). rewrite <- sub_0_le in GE'; rewrite GE'. split; intros LT. elim (lt_irrefl m). apply le_lt_trans with (n+p); trivial. rewrite <- (add_0_l m). apply add_le_mono. apply le_0_l. assumption. now elim (nlt_0_r n). Qed. Theorem lt_add_lt_sub_l : forall n m p, n + p < m <-> p < m - n. Proof. intros n m p. rewrite add_comm; apply lt_add_lt_sub_r. Qed. Theorem sub_lt : forall n m, m <= n -> 0 < m -> n - m < n. Proof. intros n m LE LT. assert (LE' := le_sub_l n m). rewrite lt_eq_cases in LE'. destruct LE' as [LT'|EQ]. assumption. apply add_sub_eq_nz in EQ; [|order]. rewrite (add_lt_mono_r _ _ n), add_0_l in LT. order. Qed. Lemma sub_le_mono_r : forall n m p, n <= m -> n-p <= m-p. Proof. intros. rewrite le_sub_le_add_r. transitivity m. assumption. apply sub_add_le. Qed. Lemma sub_le_mono_l : forall n m p, n <= m -> p-m <= p-n. Proof. intros. rewrite le_sub_le_add_r. transitivity (p-n+n); [ apply sub_add_le | now apply add_le_mono_l]. Qed. (** Sub and mul *) Theorem mul_pred_r : forall n m, n * (P m) == n * m - n. Proof. intros n m; cases m. now rewrite pred_0, mul_0_r, sub_0_l. intro m; rewrite pred_succ, mul_succ_r, <- add_sub_assoc. now rewrite sub_diag, add_0_r. now apply eq_le_incl. Qed. Theorem mul_sub_distr_r : forall n m p, (n - m) * p == n * p - m * p. Proof. intros n m p; induct n. now rewrite sub_0_l, mul_0_l, sub_0_l. intros n IH. destruct (le_gt_cases m n) as [H | H]. rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l. rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p). rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r. now apply add_cancel_l. assert (H1 : S n <= m); [now apply le_succ_l |]. setoid_replace (S n - m) with 0 by now apply sub_0_le. setoid_replace ((S n * p) - m * p) with 0 by (apply sub_0_le; now apply mul_le_mono_r). apply mul_0_l. Qed. Theorem mul_sub_distr_l : forall n m p, p * (n - m) == p * n - p * m. Proof. intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m). apply mul_sub_distr_r. Qed. (** Alternative definitions of [<=] and [<] based on [+] *) Definition le_alt n m := exists p, p + n == m. Definition lt_alt n m := exists p, S p + n == m. Lemma le_equiv : forall n m, le_alt n m <-> n <= m. Proof. split. intros (p,H). rewrite <- H, add_comm. apply le_add_r. intro H. exists (m-n). now apply sub_add. Qed. Lemma lt_equiv : forall n m, lt_alt n m <-> n < m. Proof. split. intros (p,H). rewrite <- H, add_succ_l, lt_succ_r, add_comm. apply le_add_r. intro H. exists (m-S n). rewrite add_succ_l, <- add_succ_r. apply sub_add. now rewrite le_succ_l. Qed. Instance le_alt_wd : Proper (eq==>eq==>iff) le_alt. Proof. intros x x' Hx y y' Hy; unfold le_alt. setoid_rewrite Hx. setoid_rewrite Hy. auto with *. Qed. Instance lt_alt_wd : Proper (eq==>eq==>iff) lt_alt. Proof. intros x x' Hx y y' Hy; unfold lt_alt. setoid_rewrite Hx. setoid_rewrite Hy. auto with *. Qed. (** With these alternative definition, the dichotomy: [forall n m, n <= m \/ m <= n] becomes: [forall n m, (exists p, p + n == m) \/ (exists p, p + m == n)] We will need this in the proof of induction principle for integers constructed as pairs of natural numbers. This formula can be proved from know properties of [<=]. However, it can also be done directly. *) Theorem le_alt_dichotomy : forall n m, le_alt n m \/ le_alt m n. Proof. intros n m; induct n. left; exists m; apply add_0_r. intros n IH. destruct IH as [[p H] | [p H]]. destruct (zero_or_succ p) as [H1 | [p' H1]]; rewrite H1 in H. rewrite add_0_l in H. right; exists (S 0); rewrite H, add_succ_l; now rewrite add_0_l. left; exists p'; rewrite add_succ_r; now rewrite add_succ_l in H. right; exists (S p). rewrite add_succ_l; now rewrite H. Qed. Theorem add_dichotomy : forall n m, (exists p, p + n == m) \/ (exists p, p + m == n). Proof. exact le_alt_dichotomy. Qed. End NSubProp.