(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* forall m1 m2 : N, m1 == m2 -> (n1 < m1 <-> n2 < m2). Proof NZlt_wd. Theorem le_wd : forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 <= m1 <-> n2 <= m2). Proof NZle_wd. Theorem min_wd : forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> min n1 m1 == min n2 m2. Proof NZmin_wd. Theorem max_wd : forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> max n1 m1 == max n2 m2. Proof NZmax_wd. Theorem lt_eq_cases : forall n m : N, n <= m <-> n < m \/ n == m. Proof NZlt_eq_cases. Theorem lt_irrefl : forall n : N, ~ n < n. Proof NZlt_irrefl. Theorem lt_succ_r : forall n m : N, n < S m <-> n <= m. Proof NZlt_succ_r. Theorem min_l : forall n m : N, n <= m -> min n m == n. Proof NZmin_l. Theorem min_r : forall n m : N, m <= n -> min n m == m. Proof NZmin_r. Theorem max_l : forall n m : N, m <= n -> max n m == n. Proof NZmax_l. Theorem max_r : forall n m : N, n <= m -> max n m == m. Proof NZmax_r. (* Renaming theorems from NZOrder.v *) Theorem lt_le_incl : forall n m : N, n < m -> n <= m. Proof NZlt_le_incl. Theorem eq_le_incl : forall n m : N, n == m -> n <= m. Proof NZeq_le_incl. Theorem lt_neq : forall n m : N, n < m -> n ~= m. Proof NZlt_neq. Theorem le_neq : forall n m : N, n < m <-> n <= m /\ n ~= m. Proof NZle_neq. Theorem le_refl : forall n : N, n <= n. Proof NZle_refl. Theorem lt_succ_diag_r : forall n : N, n < S n. Proof NZlt_succ_diag_r. Theorem le_succ_diag_r : forall n : N, n <= S n. Proof NZle_succ_diag_r. Theorem lt_0_1 : 0 < 1. Proof NZlt_0_1. Theorem le_0_1 : 0 <= 1. Proof NZle_0_1. Theorem lt_lt_succ_r : forall n m : N, n < m -> n < S m. Proof NZlt_lt_succ_r. Theorem le_le_succ_r : forall n m : N, n <= m -> n <= S m. Proof NZle_le_succ_r. Theorem le_succ_r : forall n m : N, n <= S m <-> n <= m \/ n == S m. Proof NZle_succ_r. Theorem neq_succ_diag_l : forall n : N, S n ~= n. Proof NZneq_succ_diag_l. Theorem neq_succ_diag_r : forall n : N, n ~= S n. Proof NZneq_succ_diag_r. Theorem nlt_succ_diag_l : forall n : N, ~ S n < n. Proof NZnlt_succ_diag_l. Theorem nle_succ_diag_l : forall n : N, ~ S n <= n. Proof NZnle_succ_diag_l. Theorem le_succ_l : forall n m : N, S n <= m <-> n < m. Proof NZle_succ_l. Theorem lt_succ_l : forall n m : N, S n < m -> n < m. Proof NZlt_succ_l. Theorem succ_lt_mono : forall n m : N, n < m <-> S n < S m. Proof NZsucc_lt_mono. Theorem succ_le_mono : forall n m : N, n <= m <-> S n <= S m. Proof NZsucc_le_mono. Theorem lt_asymm : forall n m : N, n < m -> ~ m < n. Proof NZlt_asymm. Notation lt_ngt := lt_asymm (only parsing). Theorem lt_trans : forall n m p : N, n < m -> m < p -> n < p. Proof NZlt_trans. Theorem le_trans : forall n m p : N, n <= m -> m <= p -> n <= p. Proof NZle_trans. Theorem le_lt_trans : forall n m p : N, n <= m -> m < p -> n < p. Proof NZle_lt_trans. Theorem lt_le_trans : forall n m p : N, n < m -> m <= p -> n < p. Proof NZlt_le_trans. Theorem le_antisymm : forall n m : N, n <= m -> m <= n -> n == m. Proof NZle_antisymm. (** Trichotomy, decidability, and double negation elimination *) Theorem lt_trichotomy : forall n m : N, n < m \/ n == m \/ m < n. Proof NZlt_trichotomy. Notation lt_eq_gt_cases := lt_trichotomy (only parsing). Theorem lt_gt_cases : forall n m : N, n ~= m <-> n < m \/ n > m. Proof NZlt_gt_cases. Theorem le_gt_cases : forall n m : N, n <= m \/ n > m. Proof NZle_gt_cases. Theorem lt_ge_cases : forall n m : N, n < m \/ n >= m. Proof NZlt_ge_cases. Theorem le_ge_cases : forall n m : N, n <= m \/ n >= m. Proof NZle_ge_cases. Theorem le_ngt : forall n m : N, n <= m <-> ~ n > m. Proof NZle_ngt. Theorem nlt_ge : forall n m : N, ~ n < m <-> n >= m. Proof NZnlt_ge. Theorem lt_dec : forall n m : N, decidable (n < m). Proof NZlt_dec. Theorem lt_dne : forall n m : N, ~ ~ n < m <-> n < m. Proof NZlt_dne. Theorem nle_gt : forall n m : N, ~ n <= m <-> n > m. Proof NZnle_gt. Theorem lt_nge : forall n m : N, n < m <-> ~ n >= m. Proof NZlt_nge. Theorem le_dec : forall n m : N, decidable (n <= m). Proof NZle_dec. Theorem le_dne : forall n m : N, ~ ~ n <= m <-> n <= m. Proof NZle_dne. Theorem nlt_succ_r : forall n m : N, ~ m < S n <-> n < m. Proof NZnlt_succ_r. Theorem lt_exists_pred : forall z n : N, z < n -> exists k : N, n == S k /\ z <= k. Proof NZlt_exists_pred. Theorem lt_succ_iter_r : forall (n : nat) (m : N), m < NZsucc_iter (Datatypes.S n) m. Proof NZlt_succ_iter_r. Theorem neq_succ_iter_l : forall (n : nat) (m : N), NZsucc_iter (Datatypes.S n) m ~= m. Proof NZneq_succ_iter_l. (** Stronger variant of induction with assumptions n >= 0 (n < 0) in the induction step *) Theorem right_induction : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, A z -> (forall n : N, z <= n -> A n -> A (S n)) -> forall n : N, z <= n -> A n. Proof NZright_induction. Theorem left_induction : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, A z -> (forall n : N, n < z -> A (S n) -> A n) -> forall n : N, n <= z -> A n. Proof NZleft_induction. Theorem right_induction' : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, (forall n : N, n <= z -> A n) -> (forall n : N, z <= n -> A n -> A (S n)) -> forall n : N, A n. Proof NZright_induction'. Theorem left_induction' : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, (forall n : N, z <= n -> A n) -> (forall n : N, n < z -> A (S n) -> A n) -> forall n : N, A n. Proof NZleft_induction'. Theorem strong_right_induction : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) -> forall n : N, z <= n -> A n. Proof NZstrong_right_induction. Theorem strong_left_induction : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) -> forall n : N, n <= z -> A n. Proof NZstrong_left_induction. Theorem strong_right_induction' : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, (forall n : N, n <= z -> A n) -> (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) -> forall n : N, A n. Proof NZstrong_right_induction'. Theorem strong_left_induction' : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, (forall n : N, z <= n -> A n) -> (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) -> forall n : N, A n. Proof NZstrong_left_induction'. Theorem order_induction : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, A z -> (forall n : N, z <= n -> A n -> A (S n)) -> (forall n : N, n < z -> A (S n) -> A n) -> forall n : N, A n. Proof NZorder_induction. Theorem order_induction' : forall A : N -> Prop, predicate_wd Neq A -> forall z : N, A z -> (forall n : N, z <= n -> A n -> A (S n)) -> (forall n : N, n <= z -> A n -> A (P n)) -> forall n : N, A n. Proof NZorder_induction'. (* We don't need order_induction_0 and order_induction'_0 (see NZOrder and ZOrder) since they boil down to regular induction *) (** Elimintation principle for < *) Theorem lt_ind : forall A : N -> Prop, predicate_wd Neq A -> forall n : N, A (S n) -> (forall m : N, n < m -> A m -> A (S m)) -> forall m : N, n < m -> A m. Proof NZlt_ind. (** Elimintation principle for <= *) Theorem le_ind : forall A : N -> Prop, predicate_wd Neq A -> forall n : N, A n -> (forall m : N, n <= m -> A m -> A (S m)) -> forall m : N, n <= m -> A m. Proof NZle_ind. (** Well-founded relations *) Theorem lt_wf : forall z : N, well_founded (fun n m : N => z <= n /\ n < m). Proof NZlt_wf. Theorem gt_wf : forall z : N, well_founded (fun n m : N => m < n /\ n <= z). Proof NZgt_wf. Theorem lt_wf_0 : well_founded lt. Proof. setoid_replace lt with (fun n m : N => 0 <= n /\ n < m) using relation (@relations_eq N N). apply lt_wf. intros x y; split. intro H; split; [apply le_0_l | assumption]. now intros [_ H]. Defined. (* Theorems that are true for natural numbers but not for integers *) (* "le_0_l : forall n : N, 0 <= n" was proved in NBase.v *) Theorem nlt_0_r : forall n : N, ~ n < 0. Proof. intro n; apply -> le_ngt. apply le_0_l. Qed. Theorem nle_succ_0 : forall n : N, ~ (S n <= 0). Proof. intros n H; apply -> le_succ_l in H; false_hyp H nlt_0_r. Qed. Theorem le_0_r : forall n : N, n <= 0 <-> n == 0. Proof. intros n; split; intro H. le_elim H; [false_hyp H nlt_0_r | assumption]. now apply eq_le_incl. Qed. Theorem lt_0_succ : forall n : N, 0 < S n. Proof. induct n; [apply lt_succ_diag_r | intros n H; now apply lt_lt_succ_r]. Qed. Theorem neq_0_lt_0 : forall n : N, n ~= 0 <-> 0 < n. Proof. cases n. split; intro H; [now elim H | intro; now apply lt_irrefl with 0]. intro n; split; intro H; [apply lt_0_succ | apply neq_succ_0]. Qed. Theorem eq_0_gt_0_cases : forall n : N, n == 0 \/ 0 < n. Proof. cases n. now left. intro; right; apply lt_0_succ. Qed. Theorem zero_one : forall n : N, n == 0 \/ n == 1 \/ 1 < n. Proof. induct n. now left. cases n. intros; right; now left. intros n IH. destruct IH as [H | [H | H]]. false_hyp H neq_succ_0. right; right. rewrite H. apply lt_succ_diag_r. right; right. now apply lt_lt_succ_r. Qed. Theorem lt_1_r : forall n : N, n < 1 <-> n == 0. Proof. cases n. split; intro; [reflexivity | apply lt_succ_diag_r]. intros n. rewrite <- succ_lt_mono. split; intro H; [false_hyp H nlt_0_r | false_hyp H neq_succ_0]. Qed. Theorem le_1_r : forall n : N, n <= 1 <-> n == 0 \/ n == 1. Proof. cases n. split; intro; [now left | apply le_succ_diag_r]. intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd. split; [intro; now right | intros [H | H]; [false_hyp H neq_succ_0 | assumption]]. Qed. Theorem lt_lt_0 : forall n m : N, n < m -> 0 < m. Proof. intros n m; induct n. trivial. intros n IH H. apply IH; now apply lt_succ_l. Qed. Theorem lt_1_l : forall n m p : N, n < m -> m < p -> 1 < p. Proof. intros n m p H1 H2. apply le_lt_trans with m. apply <- le_succ_l. apply le_lt_trans with n. apply le_0_l. assumption. assumption. Qed. (** Elimination principlies for < and <= for relations *) Section RelElim. (* FIXME: Variable R : relation N. -- does not work *) Variable R : N -> N -> Prop. Hypothesis R_wd : relation_wd Neq Neq R. Add Morphism R with signature Neq ==> Neq ==> iff as R_morph2. Proof. apply R_wd. Qed. Theorem le_ind_rel : (forall m : N, R 0 m) -> (forall n m : N, n <= m -> R n m -> R (S n) (S m)) -> forall n m : N, n <= m -> R n m. Proof. intros Base Step; induct n. intros; apply Base. intros n IH m H. elim H using le_ind. solve_predicate_wd. apply Step; [| apply IH]; now apply eq_le_incl. intros k H1 H2. apply -> le_succ_l in H1. apply lt_le_incl in H1. auto. Qed. Theorem lt_ind_rel : (forall m : N, R 0 (S m)) -> (forall n m : N, n < m -> R n m -> R (S n) (S m)) -> forall n m : N, n < m -> R n m. Proof. intros Base Step; induct n. intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]]. rewrite H; apply Base. intros n IH m H. elim H using lt_ind. solve_predicate_wd. apply Step; [| apply IH]; now apply lt_succ_diag_r. intros k H1 H2. apply lt_succ_l in H1. auto. Qed. End RelElim. (** Predecessor and order *) Theorem succ_pred_pos : forall n : N, 0 < n -> S (P n) == n. Proof. intros n H; apply succ_pred; intro H1; rewrite H1 in H. false_hyp H lt_irrefl. Qed. Theorem le_pred_l : forall n : N, P n <= n. Proof. cases n. rewrite pred_0; now apply eq_le_incl. intros; rewrite pred_succ; apply le_succ_diag_r. Qed. Theorem lt_pred_l : forall n : N, n ~= 0 -> P n < n. Proof. cases n. intro H; elimtype False; now apply H. intros; rewrite pred_succ; apply lt_succ_diag_r. Qed. Theorem le_le_pred : forall n m : N, n <= m -> P n <= m. Proof. intros n m H; apply le_trans with n. apply le_pred_l. assumption. Qed. Theorem lt_lt_pred : forall n m : N, n < m -> P n < m. Proof. intros n m H; apply le_lt_trans with n. apply le_pred_l. assumption. Qed. Theorem lt_le_pred : forall n m : N, n < m -> n <= P m. (* Converse is false for n == m == 0 *) Proof. intro n; cases m. intro H; false_hyp H nlt_0_r. intros m IH. rewrite pred_succ; now apply -> lt_succ_r. Qed. Theorem lt_pred_le : forall n m : N, P n < m -> n <= m. (* Converse is false for n == m == 0 *) Proof. intros n m; cases n. rewrite pred_0; intro H; now apply lt_le_incl. intros n IH. rewrite pred_succ in IH. now apply <- le_succ_l. Qed. Theorem lt_pred_lt : forall n m : N, n < P m -> n < m. Proof. intros n m H; apply lt_le_trans with (P m); [assumption | apply le_pred_l]. Qed. Theorem le_pred_le : forall n m : N, n <= P m -> n <= m. Proof. intros n m H; apply le_trans with (P m); [assumption | apply le_pred_l]. Qed. Theorem pred_le_mono : forall n m : N, n <= m -> P n <= P m. (* Converse is false for n == 1, m == 0 *) Proof. intros n m H; elim H using le_ind_rel. solve_relation_wd. intro; rewrite pred_0; apply le_0_l. intros p q H1 _; now do 2 rewrite pred_succ. Qed. Theorem pred_lt_mono : forall n m : N, n ~= 0 -> (n < m <-> P n < P m). Proof. intros n m H1; split; intro H2. assert (m ~= 0). apply <- neq_0_lt_0. now apply lt_lt_0 with n. now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ; [apply <- succ_lt_mono | | |]. assert (m ~= 0). apply <- neq_0_lt_0. apply lt_lt_0 with (P n). apply lt_le_trans with (P m). assumption. apply le_pred_l. apply -> succ_lt_mono in H2. now do 2 rewrite succ_pred in H2. Qed. Theorem lt_succ_lt_pred : forall n m : N, S n < m <-> n < P m. Proof. intros n m. rewrite pred_lt_mono by apply neq_succ_0. now rewrite pred_succ. Qed. Theorem le_succ_le_pred : forall n m : N, S n <= m -> n <= P m. (* Converse is false for n == m == 0 *) Proof. intros n m H. apply lt_le_pred. now apply -> le_succ_l. Qed. Theorem lt_pred_lt_succ : forall n m : N, P n < m -> n < S m. (* Converse is false for n == m == 0 *) Proof. intros n m H. apply <- lt_succ_r. now apply lt_pred_le. Qed. Theorem le_pred_le_succ : forall n m : N, P n <= m <-> n <= S m. Proof. intros n m; cases n. rewrite pred_0. split; intro H; apply le_0_l. intro n. rewrite pred_succ. apply succ_le_mono. Qed. End NOrderPropFunct.