(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0 <= n < m). apply lt_wf. intros x y; split. intro H; split; [apply le_0_l | assumption]. now intros [_ H]. Defined. (* "le_0_l : forall n : N, 0 <= n" was proved in NBase.v *) Theorem nlt_0_r : forall n, ~ n < 0. Proof. intro n; apply le_ngt. apply le_0_l. Qed. Theorem nle_succ_0 : forall n, ~ (S n <= 0). Proof. intros n H; apply le_succ_l in H; false_hyp H nlt_0_r. Qed. Theorem le_0_r : forall n, n <= 0 <-> n == 0. Proof. intros n; split; intro H. le_elim H; [false_hyp H nlt_0_r | assumption]. now apply eq_le_incl. Qed. Theorem lt_0_succ : forall n, 0 < S n. Proof. induct n; [apply lt_succ_diag_r | intros n H; now apply lt_lt_succ_r]. Qed. Theorem neq_0_lt_0 : forall n, n ~= 0 <-> 0 < n. Proof. cases n. split; intro H; [now elim H | intro; now apply lt_irrefl with 0]. intro n; split; intro H; [apply lt_0_succ | apply neq_succ_0]. Qed. Theorem eq_0_gt_0_cases : forall n, n == 0 \/ 0 < n. Proof. cases n. now left. intro; right; apply lt_0_succ. Qed. Theorem zero_one : forall n, n == 0 \/ n == 1 \/ 1 < n. Proof. setoid_rewrite one_succ. induct n. now left. cases n. intros; right; now left. intros n IH. destruct IH as [H | [H | H]]. false_hyp H neq_succ_0. right; right. rewrite H. apply lt_succ_diag_r. right; right. now apply lt_lt_succ_r. Qed. Theorem lt_1_r : forall n, n < 1 <-> n == 0. Proof. setoid_rewrite one_succ. cases n. split; intro; [reflexivity | apply lt_succ_diag_r]. intros n. rewrite <- succ_lt_mono. split; intro H; [false_hyp H nlt_0_r | false_hyp H neq_succ_0]. Qed. Theorem le_1_r : forall n, n <= 1 <-> n == 0 \/ n == 1. Proof. setoid_rewrite one_succ. cases n. split; intro; [now left | apply le_succ_diag_r]. intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd. split; [intro; now right | intros [H | H]; [false_hyp H neq_succ_0 | assumption]]. Qed. Theorem lt_lt_0 : forall n m, n < m -> 0 < m. Proof. intros n m; induct n. trivial. intros n IH H. apply IH; now apply lt_succ_l. Qed. Theorem lt_1_l' : forall n m p, n < m -> m < p -> 1 < p. Proof. intros. apply lt_1_l with m; auto. apply le_lt_trans with n; auto. now apply le_0_l. Qed. (** Elimination principlies for < and <= for relations *) Section RelElim. Variable R : relation N.t. Hypothesis R_wd : Proper (N.eq==>N.eq==>iff) R. Theorem le_ind_rel : (forall m, R 0 m) -> (forall n m, n <= m -> R n m -> R (S n) (S m)) -> forall n m, n <= m -> R n m. Proof. intros Base Step; induct n. intros; apply Base. intros n IH m H. elim H using le_ind. solve_proper. apply Step; [| apply IH]; now apply eq_le_incl. intros k H1 H2. apply le_succ_l in H1. apply lt_le_incl in H1. auto. Qed. Theorem lt_ind_rel : (forall m, R 0 (S m)) -> (forall n m, n < m -> R n m -> R (S n) (S m)) -> forall n m, n < m -> R n m. Proof. intros Base Step; induct n. intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]]. rewrite H; apply Base. intros n IH m H. elim H using lt_ind. solve_proper. apply Step; [| apply IH]; now apply lt_succ_diag_r. intros k H1 H2. apply lt_succ_l in H1. auto. Qed. End RelElim. (** Predecessor and order *) Theorem succ_pred_pos : forall n, 0 < n -> S (P n) == n. Proof. intros n H; apply succ_pred; intro H1; rewrite H1 in H. false_hyp H lt_irrefl. Qed. Theorem le_pred_l : forall n, P n <= n. Proof. cases n. rewrite pred_0; now apply eq_le_incl. intros; rewrite pred_succ; apply le_succ_diag_r. Qed. Theorem lt_pred_l : forall n, n ~= 0 -> P n < n. Proof. cases n. intro H; exfalso; now apply H. intros; rewrite pred_succ; apply lt_succ_diag_r. Qed. Theorem le_le_pred : forall n m, n <= m -> P n <= m. Proof. intros n m H; apply le_trans with n. apply le_pred_l. assumption. Qed. Theorem lt_lt_pred : forall n m, n < m -> P n < m. Proof. intros n m H; apply le_lt_trans with n. apply le_pred_l. assumption. Qed. Theorem lt_le_pred : forall n m, n < m -> n <= P m. (* Converse is false for n == m == 0 *) Proof. intro n; cases m. intro H; false_hyp H nlt_0_r. intros m IH. rewrite pred_succ; now apply lt_succ_r. Qed. Theorem lt_pred_le : forall n m, P n < m -> n <= m. (* Converse is false for n == m == 0 *) Proof. intros n m; cases n. rewrite pred_0; intro H; now apply lt_le_incl. intros n IH. rewrite pred_succ in IH. now apply le_succ_l. Qed. Theorem lt_pred_lt : forall n m, n < P m -> n < m. Proof. intros n m H; apply lt_le_trans with (P m); [assumption | apply le_pred_l]. Qed. Theorem le_pred_le : forall n m, n <= P m -> n <= m. Proof. intros n m H; apply le_trans with (P m); [assumption | apply le_pred_l]. Qed. Theorem pred_le_mono : forall n m, n <= m -> P n <= P m. (* Converse is false for n == 1, m == 0 *) Proof. intros n m H; elim H using le_ind_rel. solve_proper. intro; rewrite pred_0; apply le_0_l. intros p q H1 _; now do 2 rewrite pred_succ. Qed. Theorem pred_lt_mono : forall n m, n ~= 0 -> (n < m <-> P n < P m). Proof. intros n m H1; split; intro H2. assert (m ~= 0). apply neq_0_lt_0. now apply lt_lt_0 with n. now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ; [apply succ_lt_mono | | |]. assert (m ~= 0). apply neq_0_lt_0. apply lt_lt_0 with (P n). apply lt_le_trans with (P m). assumption. apply le_pred_l. apply succ_lt_mono in H2. now do 2 rewrite succ_pred in H2. Qed. Theorem lt_succ_lt_pred : forall n m, S n < m <-> n < P m. Proof. intros n m. rewrite pred_lt_mono by apply neq_succ_0. now rewrite pred_succ. Qed. Theorem le_succ_le_pred : forall n m, S n <= m -> n <= P m. (* Converse is false for n == m == 0 *) Proof. intros n m H. apply lt_le_pred. now apply le_succ_l. Qed. Theorem lt_pred_lt_succ : forall n m, P n < m -> n < S m. (* Converse is false for n == m == 0 *) Proof. intros n m H. apply lt_succ_r. now apply lt_pred_le. Qed. Theorem le_pred_le_succ : forall n m, P n <= m <-> n <= S m. Proof. intros n m; cases n. rewrite pred_0. split; intro H; apply le_0_l. intro n. rewrite pred_succ. apply succ_le_mono. Qed. End NOrderProp.