(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (p * n < p * m <-> q * n + m < q * m + n). Proof NZmul_lt_pred. Theorem mul_lt_mono_pos_l : forall p n m : N, 0 < p -> (n < m <-> p * n < p * m). Proof NZmul_lt_mono_pos_l. Theorem mul_lt_mono_pos_r : forall p n m : N, 0 < p -> (n < m <-> n * p < m * p). Proof NZmul_lt_mono_pos_r. Theorem mul_cancel_l : forall n m p : N, p ~= 0 -> (p * n == p * m <-> n == m). Proof NZmul_cancel_l. Theorem mul_cancel_r : forall n m p : N, p ~= 0 -> (n * p == m * p <-> n == m). Proof NZmul_cancel_r. Theorem mul_id_l : forall n m : N, m ~= 0 -> (n * m == m <-> n == 1). Proof NZmul_id_l. Theorem mul_id_r : forall n m : N, n ~= 0 -> (n * m == n <-> m == 1). Proof NZmul_id_r. Theorem mul_le_mono_pos_l : forall n m p : N, 0 < p -> (n <= m <-> p * n <= p * m). Proof NZmul_le_mono_pos_l. Theorem mul_le_mono_pos_r : forall n m p : N, 0 < p -> (n <= m <-> n * p <= m * p). Proof NZmul_le_mono_pos_r. Theorem mul_pos_pos : forall n m : N, 0 < n -> 0 < m -> 0 < n * m. Proof NZmul_pos_pos. Theorem lt_1_mul_pos : forall n m : N, 1 < n -> 0 < m -> 1 < n * m. Proof NZlt_1_mul_pos. Theorem eq_mul_0 : forall n m : N, n * m == 0 <-> n == 0 \/ m == 0. Proof NZeq_mul_0. Theorem neq_mul_0 : forall n m : N, n ~= 0 /\ m ~= 0 <-> n * m ~= 0. Proof NZneq_mul_0. Theorem eq_square_0 : forall n : N, n * n == 0 <-> n == 0. Proof NZeq_square_0. Theorem eq_mul_0_l : forall n m : N, n * m == 0 -> m ~= 0 -> n == 0. Proof NZeq_mul_0_l. Theorem eq_mul_0_r : forall n m : N, n * m == 0 -> n ~= 0 -> m == 0. Proof NZeq_mul_0_r. Theorem square_lt_mono : forall n m : N, n < m <-> n * n < m * m. Proof. intros n m; split; intro; [apply NZsquare_lt_mono_nonneg | apply NZsquare_lt_simpl_nonneg]; try assumption; apply le_0_l. Qed. Theorem square_le_mono : forall n m : N, n <= m <-> n * n <= m * m. Proof. intros n m; split; intro; [apply NZsquare_le_mono_nonneg | apply NZsquare_le_simpl_nonneg]; try assumption; apply le_0_l. Qed. Theorem mul_2_mono_l : forall n m : N, n < m -> 1 + (1 + 1) * n < (1 + 1) * m. Proof NZmul_2_mono_l. (* Theorems that are either not valid on Z or have different proofs on N and Z *) Theorem mul_le_mono_l : forall n m p : N, n <= m -> p * n <= p * m. Proof. intros; apply NZmul_le_mono_nonneg_l. apply le_0_l. assumption. Qed. Theorem mul_le_mono_r : forall n m p : N, n <= m -> n * p <= m * p. Proof. intros; apply NZmul_le_mono_nonneg_r. apply le_0_l. assumption. Qed. Theorem mul_lt_mono : forall n m p q : N, n < m -> p < q -> n * p < m * q. Proof. intros; apply NZmul_lt_mono_nonneg; try assumption; apply le_0_l. Qed. Theorem mul_le_mono : forall n m p q : N, n <= m -> p <= q -> n * p <= m * q. Proof. intros; apply NZmul_le_mono_nonneg; try assumption; apply le_0_l. Qed. Theorem lt_0_mul : forall n m : N, n * m > 0 <-> n > 0 /\ m > 0. Proof. intros n m; split; [intro H | intros [H1 H2]]. apply -> NZlt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split. false_hyp H1 nlt_0_r. now apply NZmul_pos_pos. Qed. Notation mul_pos := lt_0_mul (only parsing). Theorem eq_mul_1 : forall n m : N, n * m == 1 <-> n == 1 /\ m == 1. Proof. intros n m. split; [| intros [H1 H2]; now rewrite H1, H2, mul_1_l]. intro H; destruct (NZlt_trichotomy n 1) as [H1 | [H1 | H1]]. apply -> lt_1_r in H1. rewrite H1, mul_0_l in H. false_hyp H neq_0_succ. rewrite H1, mul_1_l in H; now split. destruct (eq_0_gt_0_cases m) as [H2 | H2]. rewrite H2, mul_0_r in H; false_hyp H neq_0_succ. apply -> (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1. assert (H3 : 1 < n * m) by now apply (lt_1_l 0 m). rewrite H in H3; false_hyp H3 lt_irrefl. Qed. End NMulOrderPropFunct.