(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n * n < m * m. Proof. intros n m; split; intro; [apply square_lt_mono_nonneg | apply square_lt_simpl_nonneg]; try assumption; apply le_0_l. Qed. Theorem square_le_mono : forall n m, n <= m <-> n * n <= m * m. Proof. intros n m; split; intro; [apply square_le_mono_nonneg | apply square_le_simpl_nonneg]; try assumption; apply le_0_l. Qed. Theorem mul_le_mono_l : forall n m p, n <= m -> p * n <= p * m. Proof. intros; apply mul_le_mono_nonneg_l. apply le_0_l. assumption. Qed. Theorem mul_le_mono_r : forall n m p, n <= m -> n * p <= m * p. Proof. intros; apply mul_le_mono_nonneg_r. apply le_0_l. assumption. Qed. Theorem mul_lt_mono : forall n m p q, n < m -> p < q -> n * p < m * q. Proof. intros; apply mul_lt_mono_nonneg; try assumption; apply le_0_l. Qed. Theorem mul_le_mono : forall n m p q, n <= m -> p <= q -> n * p <= m * q. Proof. intros; apply mul_le_mono_nonneg; try assumption; apply le_0_l. Qed. Theorem lt_0_mul' : forall n m, n * m > 0 <-> n > 0 /\ m > 0. Proof. intros n m; split; [intro H | intros [H1 H2]]. apply lt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split. false_hyp H1 nlt_0_r. now apply mul_pos_pos. Qed. Notation mul_pos := lt_0_mul' (only parsing). Theorem eq_mul_1 : forall n m, n * m == 1 <-> n == 1 /\ m == 1. Proof. intros n m. split; [| intros [H1 H2]; now rewrite H1, H2, mul_1_l]. intro H; destruct (lt_trichotomy n 1) as [H1 | [H1 | H1]]. apply lt_1_r in H1. rewrite H1, mul_0_l in H. order'. rewrite H1, mul_1_l in H; now split. destruct (eq_0_gt_0_cases m) as [H2 | H2]. rewrite H2, mul_0_r in H. order'. apply (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1. assert (H3 : 1 < n * m) by now apply (lt_1_l m). rewrite H in H3; false_hyp H3 lt_irrefl. Qed. (** Alternative name : *) Definition mul_eq_1 := eq_mul_1. End NMulOrderProp.