(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (a mod b == 0 <-> (b|a)). Proof. intros a b Hb. split. intros Hab. exists (a/b). rewrite mul_comm. rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl. intros (c,Hc). rewrite Hc. now apply mod_mul. Qed. Lemma divide_div_mul_exact : forall a b c, b~=0 -> (b|a) -> (c*a)/b == c*(a/b). Proof. intros a b c Hb H. apply mul_cancel_l with b; trivial. rewrite mul_assoc, mul_shuffle0. assert (H':=H). apply mod_divide, div_exact in H'; trivial. rewrite <- H', (mul_comm a c). symmetry. apply div_exact; trivial. apply mod_divide; trivial. now apply divide_mul_r. Qed. (** Gcd of divided elements, for exact divisions *) Lemma gcd_div_factor : forall a b c, c~=0 -> (c|a) -> (c|b) -> gcd (a/c) (b/c) == (gcd a b)/c. Proof. intros a b c Hc Ha Hb. apply mul_cancel_l with c; try order. assert (H:=gcd_greatest _ _ _ Ha Hb). apply mod_divide, div_exact in H; try order. rewrite <- H. rewrite <- gcd_mul_mono_l; try order. f_equiv; symmetry; apply div_exact; try order; apply mod_divide; trivial; try order. Qed. Lemma gcd_div_gcd : forall a b g, g~=0 -> g == gcd a b -> gcd (a/g) (b/g) == 1. Proof. intros a b g NZ EQ. rewrite gcd_div_factor. now rewrite <- EQ, div_same. generalize (gcd_nonneg a b); order. rewrite EQ; apply gcd_divide_l. rewrite EQ; apply gcd_divide_r. Qed. (** The following equality is crucial for Euclid algorithm *) Lemma gcd_mod : forall a b, b~=0 -> gcd (a mod b) b == gcd b a. Proof. intros a b Hb. rewrite (gcd_comm _ b). rewrite <- (gcd_add_mult_diag_r b (a mod b) (a/b)). now rewrite add_comm, mul_comm, <- div_mod. Qed. (** We now define lcm thanks to gcd: lcm a b = a * (b / gcd a b) = (a / gcd a b) * b = (a*b) / gcd a b Nota: [lcm 0 0] should be 0, which isn't garantee with the third equation above. *) Definition lcm a b := a*(b/gcd a b). Instance lcm_wd : Proper (eq==>eq==>eq) lcm. Proof. unfold lcm. solve_proper. Qed. Lemma lcm_equiv1 : forall a b, gcd a b ~= 0 -> a * (b / gcd a b) == (a*b)/gcd a b. Proof. intros a b H. rewrite divide_div_mul_exact; try easy. apply gcd_divide_r. Qed. Lemma lcm_equiv2 : forall a b, gcd a b ~= 0 -> (a / gcd a b) * b == (a*b)/gcd a b. Proof. intros a b H. rewrite 2 (mul_comm _ b). rewrite divide_div_mul_exact; try easy. apply gcd_divide_l. Qed. Lemma gcd_div_swap : forall a b, (a / gcd a b) * b == a * (b / gcd a b). Proof. intros a b. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ]. apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ, EQ'. now nzsimpl. now rewrite lcm_equiv1, <-lcm_equiv2. Qed. Lemma divide_lcm_l : forall a b, (a | lcm a b). Proof. unfold lcm. intros a b. apply divide_factor_l. Qed. Lemma divide_lcm_r : forall a b, (b | lcm a b). Proof. unfold lcm. intros a b. rewrite <- gcd_div_swap. apply divide_factor_r. Qed. Lemma divide_div : forall a b c, a~=0 -> (a|b) -> (b|c) -> (b/a|c/a). Proof. intros a b c Ha Hb (c',Hc). exists c'. now rewrite <- divide_div_mul_exact, Hc. Qed. Lemma lcm_least : forall a b c, (a | c) -> (b | c) -> (lcm a b | c). Proof. intros a b c Ha Hb. unfold lcm. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ]. apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ in *. now nzsimpl. assert (Ga := gcd_divide_l a b). assert (Gb := gcd_divide_r a b). set (g:=gcd a b) in *. assert (Ha' := divide_div g a c NEQ Ga Ha). assert (Hb' := divide_div g b c NEQ Gb Hb). destruct Ha' as (a',Ha'). rewrite Ha', mul_comm in Hb'. apply gauss in Hb'; [|apply gcd_div_gcd; unfold g; trivial using gcd_comm]. destruct Hb' as (b',Hb'). exists b'. rewrite mul_shuffle3, <- Hb'. rewrite (proj2 (div_exact c g NEQ)). rewrite Ha', mul_shuffle3, (mul_comm a a'). f_equiv. symmetry. apply div_exact; trivial. apply mod_divide; trivial. apply mod_divide; trivial. transitivity a; trivial. Qed. Lemma lcm_comm : forall a b, lcm a b == lcm b a. Proof. intros a b. unfold lcm. rewrite (gcd_comm b), (mul_comm b). now rewrite <- gcd_div_swap. Qed. Lemma lcm_divide_iff : forall n m p, (lcm n m | p) <-> (n | p) /\ (m | p). Proof. intros. split. split. transitivity (lcm n m); trivial using divide_lcm_l. transitivity (lcm n m); trivial using divide_lcm_r. intros (H,H'). now apply lcm_least. Qed. Lemma lcm_unique : forall n m p, 0<=p -> (n|p) -> (m|p) -> (forall q, (n|q) -> (m|q) -> (p|q)) -> lcm n m == p. Proof. intros n m p Hp Hn Hm H. apply divide_antisym; trivial. now apply lcm_least. apply H. apply divide_lcm_l. apply divide_lcm_r. Qed. Lemma lcm_unique_alt : forall n m p, 0<=p -> (forall q, (p|q) <-> (n|q) /\ (m|q)) -> lcm n m == p. Proof. intros n m p Hp H. apply lcm_unique; trivial. apply H, divide_refl. apply H, divide_refl. intros. apply H. now split. Qed. Lemma lcm_assoc : forall n m p, lcm n (lcm m p) == lcm (lcm n m) p. Proof. intros. apply lcm_unique_alt. apply le_0_l. intros. now rewrite !lcm_divide_iff, and_assoc. Qed. Lemma lcm_0_l : forall n, lcm 0 n == 0. Proof. intros. apply lcm_unique; trivial. order. apply divide_refl. apply divide_0_r. Qed. Lemma lcm_0_r : forall n, lcm n 0 == 0. Proof. intros. now rewrite lcm_comm, lcm_0_l. Qed. Lemma lcm_1_l : forall n, lcm 1 n == n. Proof. intros. apply lcm_unique; trivial using divide_1_l, le_0_l, divide_refl. Qed. Lemma lcm_1_r : forall n, lcm n 1 == n. Proof. intros. now rewrite lcm_comm, lcm_1_l. Qed. Lemma lcm_diag : forall n, lcm n n == n. Proof. intros. apply lcm_unique; trivial using divide_refl, le_0_l. Qed. Lemma lcm_eq_0 : forall n m, lcm n m == 0 <-> n == 0 \/ m == 0. Proof. intros. split. intros EQ. apply eq_mul_0. apply divide_0_l. rewrite <- EQ. apply lcm_least. apply divide_factor_l. apply divide_factor_r. destruct 1 as [EQ|EQ]; rewrite EQ. apply lcm_0_l. apply lcm_0_r. Qed. Lemma divide_lcm_eq_r : forall n m, (n|m) -> lcm n m == m. Proof. intros n m H. apply lcm_unique_alt; trivial using le_0_l. intros q. split. split; trivial. now transitivity m. now destruct 1. Qed. Lemma divide_lcm_iff : forall n m, (n|m) <-> lcm n m == m. Proof. intros n m. split. now apply divide_lcm_eq_r. intros EQ. rewrite <- EQ. apply divide_lcm_l. Qed. Lemma lcm_mul_mono_l : forall n m p, lcm (p * n) (p * m) == p * lcm n m. Proof. intros n m p. destruct (eq_decidable p 0) as [Hp|Hp]. rewrite Hp. nzsimpl. rewrite lcm_0_l. now nzsimpl. destruct (eq_decidable (gcd n m) 0) as [Hg|Hg]. apply gcd_eq_0 in Hg. destruct Hg as (Hn,Hm); rewrite Hn, Hm. nzsimpl. rewrite lcm_0_l. now nzsimpl. unfold lcm. rewrite gcd_mul_mono_l. rewrite mul_assoc. f_equiv. now rewrite div_mul_cancel_l. Qed. Lemma lcm_mul_mono_r : forall n m p, lcm (n * p) (m * p) == lcm n m * p. Proof. intros n m p. now rewrite !(mul_comm _ p), lcm_mul_mono_l, mul_comm. Qed. Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 -> (gcd n m == 1 <-> lcm n m == n*m). Proof. intros n m Hn Hm. split; intros H. unfold lcm. rewrite H. now rewrite div_1_r. unfold lcm in *. apply mul_cancel_l in H; trivial. assert (Hg : gcd n m ~= 0) by (red; rewrite gcd_eq_0; destruct 1; order). assert (H' := gcd_divide_r n m). apply mod_divide in H'; trivial. apply div_exact in H'; trivial. rewrite H in H'. rewrite <- (mul_1_l m) in H' at 1. now apply mul_cancel_r in H'. Qed. End NLcmProp.