(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* a mod b < b. Proof. intros. apply mod_bound_pos; auto'. Qed. (** Another formulation of the main equation *) Lemma mod_eq : forall a b, b~=0 -> a mod b == a - b*(a/b). Proof. intros. symmetry. apply add_sub_eq_l. symmetry. now apply div_mod. Qed. (** Uniqueness theorems *) Theorem div_mod_unique : forall b q1 q2 r1 r2, r1 r2 b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2. Proof. intros. apply div_mod_unique with b; auto'. Qed. Theorem div_unique: forall a b q r, r a == b*q + r -> q == a/b. Proof. intros; apply div_unique with r; auto'. Qed. Theorem mod_unique: forall a b q r, r a == b*q + r -> r == a mod b. Proof. intros. apply mod_unique with q; auto'. Qed. Theorem div_unique_exact: forall a b q, b~=0 -> a == b*q -> q == a/b. Proof. intros. apply div_unique_exact; auto'. Qed. (** A division by itself returns 1 *) Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. intros. apply div_same; auto'. Qed. Lemma mod_same : forall a, a~=0 -> a mod a == 0. Proof. intros. apply mod_same; auto'. Qed. (** A division of a small number by a bigger one yields zero. *) Theorem div_small: forall a b, a a/b == 0. Proof. intros. apply div_small; auto'. Qed. (** Same situation, in term of modulo: *) Theorem mod_small: forall a b, a a mod b == a. Proof. intros. apply mod_small; auto'. Qed. (** * Basic values of divisions and modulo. *) Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. intros. apply div_0_l; auto'. Qed. Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. Proof. intros. apply mod_0_l; auto'. Qed. Lemma div_1_r: forall a, a/1 == a. Proof. intros. apply div_1_r; auto'. Qed. Lemma mod_1_r: forall a, a mod 1 == 0. Proof. intros. apply mod_1_r; auto'. Qed. Lemma div_1_l: forall a, 1 1/a == 0. Proof. exact div_1_l. Qed. Lemma mod_1_l: forall a, 1 1 mod a == 1. Proof. exact mod_1_l. Qed. Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. Proof. intros. apply div_mul; auto'. Qed. Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. Proof. intros. apply mod_mul; auto'. Qed. (** * Order results about mod and div *) (** A modulo cannot grow beyond its starting point. *) Theorem mod_le: forall a b, b~=0 -> a mod b <= a. Proof. intros. apply mod_le; auto'. Qed. Lemma div_str_pos : forall a b, 0 0 < a/b. Proof. exact div_str_pos. Qed. Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> a (a mod b == a <-> a (0 b<=a). Proof. intros. apply div_str_pos_iff; auto'. Qed. (** As soon as the divisor is strictly greater than 1, the division is strictly decreasing. *) Lemma div_lt : forall a b, 0 1 a/b < a. Proof. exact div_lt. Qed. (** [le] is compatible with a positive division. *) Lemma div_le_mono : forall a b c, c~=0 -> a<=b -> a/c <= b/c. Proof. intros. apply div_le_mono; auto'. Qed. Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a. Proof. intros. apply mul_div_le; auto'. Qed. Lemma mul_succ_div_gt: forall a b, b~=0 -> a < b*(S (a/b)). Proof. intros; apply mul_succ_div_gt; auto'. Qed. (** The previous inequality is exact iff the modulo is zero. *) Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). Proof. intros. apply div_exact; auto'. Qed. (** Some additional inequalities about div. *) Theorem div_lt_upper_bound: forall a b q, b~=0 -> a < b*q -> a/b < q. Proof. intros. apply div_lt_upper_bound; auto'. Qed. Theorem div_le_upper_bound: forall a b q, b~=0 -> a <= b*q -> a/b <= q. Proof. intros; apply div_le_upper_bound; auto'. Qed. Theorem div_le_lower_bound: forall a b q, b~=0 -> b*q <= a -> q <= a/b. Proof. intros; apply div_le_lower_bound; auto'. Qed. (** A division respects opposite monotonicity for the divisor *) Lemma div_le_compat_l: forall p q r, 0 p/r <= p/q. Proof. intros. apply div_le_compat_l. auto'. auto. Qed. (** * Relations between usual operations and mod and div *) Lemma mod_add : forall a b c, c~=0 -> (a + b * c) mod c == a mod c. Proof. intros. apply mod_add; auto'. Qed. Lemma div_add : forall a b c, c~=0 -> (a + b * c) / c == a / c + b. Proof. intros. apply div_add; auto'. Qed. Lemma div_add_l: forall a b c, b~=0 -> (a * b + c) / b == a + c / b. Proof. intros. apply div_add_l; auto'. Qed. (** Cancellations. *) Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 -> (a*c)/(b*c) == a/b. Proof. intros. apply div_mul_cancel_r; auto'. Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)/(c*b) == a/b. Proof. intros. apply div_mul_cancel_l; auto'. Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) mod (b*c) == (a mod b) * c. Proof. intros. apply mul_mod_distr_r; auto'. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> (c*a) mod (c*b) == c * (a mod b). Proof. intros. apply mul_mod_distr_l; auto'. Qed. (** Operations modulo. *) Theorem mod_mod: forall a n, n~=0 -> (a mod n) mod n == a mod n. Proof. intros. apply mod_mod; auto'. Qed. Lemma mul_mod_idemp_l : forall a b n, n~=0 -> ((a mod n)*b) mod n == (a*b) mod n. Proof. intros. apply mul_mod_idemp_l; auto'. Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. intros. apply mul_mod_idemp_r; auto'. Qed. Theorem mul_mod: forall a b n, n~=0 -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. intros. apply mul_mod; auto'. Qed. Lemma add_mod_idemp_l : forall a b n, n~=0 -> ((a mod n)+b) mod n == (a+b) mod n. Proof. intros. apply add_mod_idemp_l; auto'. Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. intros. apply add_mod_idemp_r; auto'. Qed. Theorem add_mod: forall a b n, n~=0 -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. intros. apply add_mod; auto'. Qed. Lemma div_div : forall a b c, b~=0 -> c~=0 -> (a/b)/c == a/(b*c). Proof. intros. apply div_div; auto'. Qed. Lemma mod_mul_r : forall a b c, b~=0 -> c~=0 -> a mod (b*c) == a mod b + b*((a/b) mod c). Proof. intros. apply mod_mul_r; auto'. Qed. (** A last inequality: *) Theorem div_mul_le: forall a b c, b~=0 -> c*(a/b) <= (c*a)/b. Proof. intros. apply div_mul_le; auto'. Qed. (** mod is related to divisibility *) Lemma mod_divides : forall a b, b~=0 -> (a mod b == 0 <-> exists c, a == b*c). Proof. intros. apply mod_divides; auto'. Qed. End NDivProp.