(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* S p) x. Infix Local "++" := def_add (at level 50, left associativity). Add Morphism def_add with signature Neq ==> Neq ==> Neq as def_add_wd. Proof. unfold def_add. intros x x' Exx' y y' Eyy'. apply recursion_wd with (Aeq := Neq). assumption. unfold fun2_eq; intros _ _ _ p p' Epp'; now rewrite Epp'. assumption. Qed. Theorem def_add_0_l : forall y : N, 0 ++ y == y. Proof. intro y. unfold def_add. now rewrite recursion_0. Qed. Theorem def_add_succ_l : forall x y : N, S x ++ y == S (x ++ y). Proof. intros x y; unfold def_add. rewrite (@recursion_succ N Neq); try reflexivity. unfold fun2_wd. intros _ _ _ m1 m2 H2. now rewrite H2. Qed. Theorem def_add_add : forall n m : N, n ++ m == n + m. Proof. intros n m; induct n. now rewrite def_add_0_l, add_0_l. intros n H. now rewrite def_add_succ_l, add_succ_l, H. Qed. (*****************************************************) (** Multiplication *) Definition def_mul (x y : N) := recursion 0 (fun _ p => p ++ x) y. Infix Local "**" := def_mul (at level 40, left associativity). Lemma def_mul_step_wd : forall x : N, fun2_wd Neq Neq Neq (fun _ p => def_add p x). Proof. unfold fun2_wd. intros. now apply def_add_wd. Qed. Lemma def_mul_step_equal : forall x x' : N, x == x' -> fun2_eq Neq Neq Neq (fun _ p => def_add p x) (fun x p => def_add p x'). Proof. unfold fun2_eq; intros; apply def_add_wd; assumption. Qed. Add Morphism def_mul with signature Neq ==> Neq ==> Neq as def_mul_wd. Proof. unfold def_mul. intros x x' Exx' y y' Eyy'. apply recursion_wd with (Aeq := Neq). reflexivity. apply def_mul_step_equal. assumption. assumption. Qed. Theorem def_mul_0_r : forall x : N, x ** 0 == 0. Proof. intro. unfold def_mul. now rewrite recursion_0. Qed. Theorem def_mul_succ_r : forall x y : N, x ** S y == x ** y ++ x. Proof. intros x y; unfold def_mul. now rewrite (@recursion_succ N Neq); [| apply def_mul_step_wd |]. Qed. Theorem def_mul_mul : forall n m : N, n ** m == n * m. Proof. intros n m; induct m. now rewrite def_mul_0_r, mul_0_r. intros m IH; now rewrite def_mul_succ_r, mul_succ_r, def_add_add, IH. Qed. (*****************************************************) (** Order *) Definition def_ltb (m : N) : N -> bool := recursion (if_zero false true) (fun _ f => fun n => recursion false (fun n' _ => f n') n) m. Infix Local "<<" := def_ltb (at level 70, no associativity). Lemma lt_base_wd : fun_wd Neq (@eq bool) (if_zero false true). unfold fun_wd; intros; now apply if_zero_wd. Qed. Lemma lt_step_wd : fun2_wd Neq (fun_eq Neq (@eq bool)) (fun_eq Neq (@eq bool)) (fun _ f => fun n => recursion false (fun n' _ => f n') n). Proof. unfold fun2_wd, fun_eq. intros x x' Exx' f f' Eff' y y' Eyy'. apply recursion_wd with (Aeq := @eq bool). reflexivity. unfold fun2_eq; intros; now apply Eff'. assumption. Qed. Lemma lt_curry_wd : forall m m' : N, m == m' -> fun_eq Neq (@eq bool) (def_ltb m) (def_ltb m'). Proof. unfold def_ltb. intros m m' Emm'. apply recursion_wd with (Aeq := fun_eq Neq (@eq bool)). apply lt_base_wd. apply lt_step_wd. assumption. Qed. Add Morphism def_ltb with signature Neq ==> Neq ==> (@eq bool) as def_ltb_wd. Proof. intros; now apply lt_curry_wd. Qed. Theorem def_ltb_base : forall n : N, 0 << n = if_zero false true n. Proof. intro n; unfold def_ltb; now rewrite recursion_0. Qed. Theorem def_ltb_step : forall m n : N, S m << n = recursion false (fun n' _ => m << n') n. Proof. intros m n; unfold def_ltb. pose proof (@recursion_succ (N -> bool) (fun_eq Neq (@eq bool)) (if_zero false true) (fun _ f => fun n => recursion false (fun n' _ => f n') n) lt_base_wd lt_step_wd m n n) as H. now rewrite H. Qed. (* Above, we rewrite applications of function. Is it possible to rewrite functions themselves, i.e., rewrite (recursion lt_base lt_step (S n)) to lt_step n (recursion lt_base lt_step n)? *) Theorem def_ltb_0 : forall n : N, n << 0 = false. Proof. cases n. rewrite def_ltb_base; now rewrite if_zero_0. intro n; rewrite def_ltb_step. now rewrite recursion_0. Qed. Theorem def_ltb_0_succ : forall n : N, 0 << S n = true. Proof. intro n; rewrite def_ltb_base; now rewrite if_zero_succ. Qed. Theorem succ_def_ltb_mono : forall n m : N, (S n << S m) = (n << m). Proof. intros n m. rewrite def_ltb_step. rewrite (@recursion_succ bool (@eq bool)); try reflexivity. unfold fun2_wd; intros; now apply def_ltb_wd. Qed. Theorem def_ltb_lt : forall n m : N, n << m = true <-> n < m. Proof. double_induct n m. cases m. rewrite def_ltb_0. split; intro H; [discriminate H | false_hyp H nlt_0_r]. intro n. rewrite def_ltb_0_succ. split; intro; [apply lt_0_succ | reflexivity]. intro n. rewrite def_ltb_0. split; intro H; [discriminate | false_hyp H nlt_0_r]. intros n m. rewrite succ_def_ltb_mono. now rewrite <- succ_lt_mono. Qed. (* (*****************************************************) (** Even *) Definition even (x : N) := recursion true (fun _ p => negb p) x. Lemma even_step_wd : fun2_wd Neq (@eq bool) (@eq bool) (fun x p => if p then false else true). Proof. unfold fun2_wd. intros x x' Exx' b b' Ebb'. unfold eq_bool; destruct b; destruct b'; now simpl. Qed. Add Morphism even with signature Neq ==> (@eq bool) as even_wd. Proof. unfold even; intros. apply recursion_wd with (A := bool) (Aeq := (@eq bool)). now unfold eq_bool. unfold fun2_eq. intros _ _ _ b b' Ebb'. unfold eq_bool; destruct b; destruct b'; now simpl. assumption. Qed. Theorem even_0 : even 0 = true. Proof. unfold even. now rewrite recursion_0. Qed. Theorem even_succ : forall x : N, even (S x) = negb (even x). Proof. unfold even. intro x; rewrite (recursion_succ (@eq bool)); try reflexivity. unfold fun2_wd. intros _ _ _ b b' Ebb'. destruct b; destruct b'; now simpl. Qed. (*****************************************************) (** Division by 2 *) Definition half_aux (x : N) : N * N := recursion (0, 0) (fun _ p => let (x1, x2) := p in ((S x2, x1))) x. Definition half (x : N) := snd (half_aux x). Definition E2 := prod_rel Neq Neq. Add Relation (prod N N) E2 reflexivity proved by (prod_rel_refl N N Neq Neq E_equiv E_equiv) symmetry proved by (prod_rel_symm N N Neq Neq E_equiv E_equiv) transitivity proved by (prod_rel_trans N N Neq Neq E_equiv E_equiv) as E2_rel. Lemma half_step_wd: fun2_wd Neq E2 E2 (fun _ p => let (x1, x2) := p in ((S x2, x1))). Proof. unfold fun2_wd, E2, prod_rel. intros _ _ _ p1 p2 [H1 H2]. destruct p1; destruct p2; simpl in *. now split; [rewrite H2 |]. Qed. Add Morphism half with signature Neq ==> Neq as half_wd. Proof. unfold half. assert (H: forall x y, x == y -> E2 (half_aux x) (half_aux y)). intros x y Exy; unfold half_aux; apply recursion_wd with (Aeq := E2); unfold E2. unfold E2. unfold prod_rel; simpl; now split. unfold fun2_eq, prod_rel; simpl. intros _ _ _ p1 p2; destruct p1; destruct p2; simpl. intros [H1 H2]; split; [rewrite H2 | assumption]. reflexivity. assumption. unfold E2, prod_rel in H. intros x y Exy; apply H in Exy. exact (proj2 Exy). Qed. (*****************************************************) (** Logarithm for the base 2 *) Definition log (x : N) : N := strong_rec 0 (fun x g => if (e x 0) then 0 else if (e x 1) then 0 else S (g (half x))) x. Add Morphism log with signature Neq ==> Neq as log_wd. Proof. intros x x' Exx'. unfold log. apply strong_rec_wd with (Aeq := Neq); try (reflexivity || assumption). unfold fun2_eq. intros y y' Eyy' g g' Egg'. assert (H : e y 0 = e y' 0); [now apply e_wd|]. rewrite <- H; clear H. assert (H : e y 1 = e y' 1); [now apply e_wd|]. rewrite <- H; clear H. assert (H : S (g (half y)) == S (g' (half y'))); [apply succ_wd; apply Egg'; now apply half_wd|]. now destruct (e y 0); destruct (e y 1). Qed. *) End NdefOpsPropFunct.