(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* p + n < p + m. Proof NZadd_lt_mono_l. Theorem add_lt_mono_r : forall n m p : N, n < m <-> n + p < m + p. Proof NZadd_lt_mono_r. Theorem add_lt_mono : forall n m p q : N, n < m -> p < q -> n + p < m + q. Proof NZadd_lt_mono. Theorem add_le_mono_l : forall n m p : N, n <= m <-> p + n <= p + m. Proof NZadd_le_mono_l. Theorem add_le_mono_r : forall n m p : N, n <= m <-> n + p <= m + p. Proof NZadd_le_mono_r. Theorem add_le_mono : forall n m p q : N, n <= m -> p <= q -> n + p <= m + q. Proof NZadd_le_mono. Theorem add_lt_le_mono : forall n m p q : N, n < m -> p <= q -> n + p < m + q. Proof NZadd_lt_le_mono. Theorem add_le_lt_mono : forall n m p q : N, n <= m -> p < q -> n + p < m + q. Proof NZadd_le_lt_mono. Theorem add_pos_pos : forall n m : N, 0 < n -> 0 < m -> 0 < n + m. Proof NZadd_pos_pos. Theorem lt_add_pos_l : forall n m : N, 0 < n -> m < n + m. Proof NZlt_add_pos_l. Theorem lt_add_pos_r : forall n m : N, 0 < n -> m < m + n. Proof NZlt_add_pos_r. Theorem le_lt_add_lt : forall n m p q : N, n <= m -> p + m < q + n -> p < q. Proof NZle_lt_add_lt. Theorem lt_le_add_lt : forall n m p q : N, n < m -> p + m <= q + n -> p < q. Proof NZlt_le_add_lt. Theorem le_le_add_le : forall n m p q : N, n <= m -> p + m <= q + n -> p <= q. Proof NZle_le_add_le. Theorem add_lt_cases : forall n m p q : N, n + m < p + q -> n < p \/ m < q. Proof NZadd_lt_cases. Theorem add_le_cases : forall n m p q : N, n + m <= p + q -> n <= p \/ m <= q. Proof NZadd_le_cases. Theorem add_pos_cases : forall n m : N, 0 < n + m -> 0 < n \/ 0 < m. Proof NZadd_pos_cases. (* Theorems true for natural numbers *) Theorem le_add_r : forall n m : N, n <= n + m. Proof. intro n; induct m. rewrite add_0_r; now apply eq_le_incl. intros m IH. rewrite add_succ_r; now apply le_le_succ_r. Qed. Theorem lt_lt_add_r : forall n m p : N, n < m -> n < m + p. Proof. intros n m p H; rewrite <- (add_0_r n). apply add_lt_le_mono; [assumption | apply le_0_l]. Qed. Theorem lt_lt_add_l : forall n m p : N, n < m -> n < p + m. Proof. intros n m p; rewrite add_comm; apply lt_lt_add_r. Qed. Theorem add_pos_l : forall n m : N, 0 < n -> 0 < n + m. Proof. intros; apply NZadd_pos_nonneg. assumption. apply le_0_l. Qed. Theorem add_pos_r : forall n m : N, 0 < m -> 0 < n + m. Proof. intros; apply NZadd_nonneg_pos. apply le_0_l. assumption. Qed. (* The following property is used to prove the correctness of the definition of order on integers constructed from pairs of natural numbers *) Theorem add_lt_repl_pair : forall n m n' m' u v : N, n + u < m + v -> n + m' == n' + m -> n' + u < m' + v. Proof. intros n m n' m' u v H1 H2. symmetry in H2. assert (H3 : n' + m <= n + m') by now apply eq_le_incl. pose proof (add_lt_le_mono _ _ _ _ H1 H3) as H4. rewrite (add_shuffle2 n u), (add_shuffle1 m v), (add_comm m n) in H4. do 2 rewrite <- add_assoc in H4. do 2 apply <- add_lt_mono_l in H4. now rewrite (add_comm n' u), (add_comm m' v). Qed. End NAddOrderPropFunct.