(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* eq==>iff) le. Proof. intros n n' Hn m m' Hm. rewrite !lt_eq_cases, !Hn, !Hm; auto with *. Qed. Ltac le_elim H := rewrite lt_eq_cases in H; destruct H as [H | H]. Theorem lt_le_incl : forall n m, n < m -> n <= m. Proof. intros; apply <- lt_eq_cases; now left. Qed. Theorem le_refl : forall n, n <= n. Proof. intro; apply <- lt_eq_cases; now right. Qed. Theorem lt_succ_diag_r : forall n, n < S n. Proof. intro n. rewrite lt_succ_r. apply le_refl. Qed. Theorem le_succ_diag_r : forall n, n <= S n. Proof. intro; apply lt_le_incl; apply lt_succ_diag_r. Qed. Theorem neq_succ_diag_l : forall n, S n ~= n. Proof. intros n H. apply (lt_irrefl n). rewrite <- H at 2. apply lt_succ_diag_r. Qed. Theorem neq_succ_diag_r : forall n, n ~= S n. Proof. intro n; apply neq_sym, neq_succ_diag_l. Qed. Theorem nlt_succ_diag_l : forall n, ~ S n < n. Proof. intros n H. apply (lt_irrefl (S n)). rewrite lt_succ_r. now apply lt_le_incl. Qed. Theorem nle_succ_diag_l : forall n, ~ S n <= n. Proof. intros n H; le_elim H. false_hyp H nlt_succ_diag_l. false_hyp H neq_succ_diag_l. Qed. Theorem le_succ_l : forall n m, S n <= m <-> n < m. Proof. intro n; nzinduct m n. split; intro H. false_hyp H nle_succ_diag_l. false_hyp H lt_irrefl. intro m. rewrite (lt_eq_cases (S n) (S m)), !lt_succ_r, (lt_eq_cases n m), succ_inj_wd. rewrite or_cancel_r. reflexivity. intros LE EQ; rewrite EQ in LE; false_hyp LE nle_succ_diag_l. intros LT EQ; rewrite EQ in LT; false_hyp LT lt_irrefl. Qed. (** Trichotomy *) Theorem le_gt_cases : forall n m, n <= m \/ n > m. Proof. intros n m; nzinduct n m. left; apply le_refl. intro n. rewrite lt_succ_r, le_succ_l, !lt_eq_cases. intuition. Qed. Theorem lt_trichotomy : forall n m, n < m \/ n == m \/ m < n. Proof. intros n m. generalize (le_gt_cases n m); rewrite lt_eq_cases; tauto. Qed. Notation lt_eq_gt_cases := lt_trichotomy (only parsing). (** Asymmetry and transitivity. *) Theorem lt_asymm : forall n m, n < m -> ~ m < n. Proof. intros n m; nzinduct n m. intros H; false_hyp H lt_irrefl. intro n; split; intros H H1 H2. apply lt_succ_r in H2. le_elim H2. apply H; auto. apply -> le_succ_l. now apply lt_le_incl. rewrite H2 in H1. false_hyp H1 nlt_succ_diag_l. apply le_succ_l in H1. le_elim H1. apply H; auto. rewrite lt_succ_r. now apply lt_le_incl. rewrite <- H1 in H2. false_hyp H2 nlt_succ_diag_l. Qed. Notation lt_ngt := lt_asymm (only parsing). Theorem lt_trans : forall n m p, n < m -> m < p -> n < p. Proof. intros n m p; nzinduct p m. intros _ H; false_hyp H lt_irrefl. intro p. rewrite 2 lt_succ_r. split; intros H H1 H2. apply lt_le_incl; le_elim H2; [now apply H | now rewrite H2 in H1]. assert (n <= p) as H3 by (auto using lt_le_incl). le_elim H3. assumption. rewrite <- H3 in H2. elim (lt_asymm n m); auto. Qed. Theorem le_trans : forall n m p, n <= m -> m <= p -> n <= p. Proof. intros n m p. rewrite 3 lt_eq_cases. intros [LT|EQ] [LT'|EQ']; try rewrite EQ; try rewrite <- EQ'; generalize (lt_trans n m p); auto with relations. Qed. (** Some type classes about order *) Instance lt_strorder : StrictOrder lt. Proof. split. exact lt_irrefl. exact lt_trans. Qed. Instance le_preorder : PreOrder le. Proof. split. exact le_refl. exact le_trans. Qed. Instance le_partialorder : PartialOrder _ le. Proof. intros x y. compute. split. intro EQ; now rewrite EQ. rewrite 2 lt_eq_cases. intuition. elim (lt_irrefl x). now transitivity y. Qed. (** We know enough now to benefit from the generic [order] tactic. *) Definition lt_compat := lt_wd. Definition lt_total := lt_trichotomy. Definition le_lteq := lt_eq_cases. Module OrderElts <: TotalOrder. Definition t := t. Definition eq := eq. Definition lt := lt. Definition le := le. Definition eq_equiv := eq_equiv. Definition lt_strorder := lt_strorder. Definition lt_compat := lt_compat. Definition lt_total := lt_total. Definition le_lteq := le_lteq. End OrderElts. Module OrderTac := !MakeOrderTac OrderElts. Ltac order := OrderTac.order. (** Some direct consequences of [order]. *) Theorem lt_neq : forall n m, n < m -> n ~= m. Proof. order. Qed. Theorem le_neq : forall n m, n < m <-> n <= m /\ n ~= m. Proof. intuition order. Qed. Theorem eq_le_incl : forall n m, n == m -> n <= m. Proof. order. Qed. Lemma lt_stepl : forall x y z, x < y -> x == z -> z < y. Proof. order. Qed. Lemma lt_stepr : forall x y z, x < y -> y == z -> x < z. Proof. order. Qed. Lemma le_stepl : forall x y z, x <= y -> x == z -> z <= y. Proof. order. Qed. Lemma le_stepr : forall x y z, x <= y -> y == z -> x <= z. Proof. order. Qed. Declare Left Step lt_stepl. Declare Right Step lt_stepr. Declare Left Step le_stepl. Declare Right Step le_stepr. Theorem le_lt_trans : forall n m p, n <= m -> m < p -> n < p. Proof. order. Qed. Theorem lt_le_trans : forall n m p, n < m -> m <= p -> n < p. Proof. order. Qed. Theorem le_antisymm : forall n m, n <= m -> m <= n -> n == m. Proof. order. Qed. (** More properties of [<] and [<=] with respect to [S] and [0]. *) Theorem le_succ_r : forall n m, n <= S m <-> n <= m \/ n == S m. Proof. intros n m; rewrite lt_eq_cases. now rewrite lt_succ_r. Qed. Theorem lt_succ_l : forall n m, S n < m -> n < m. Proof. intros n m H; apply -> le_succ_l; order. Qed. Theorem le_le_succ_r : forall n m, n <= m -> n <= S m. Proof. intros n m LE. rewrite <- lt_succ_r in LE. order. Qed. Theorem lt_lt_succ_r : forall n m, n < m -> n < S m. Proof. intros. rewrite lt_succ_r. order. Qed. Theorem succ_lt_mono : forall n m, n < m <-> S n < S m. Proof. intros n m. rewrite <- le_succ_l. symmetry. apply lt_succ_r. Qed. Theorem succ_le_mono : forall n m, n <= m <-> S n <= S m. Proof. intros n m. now rewrite 2 lt_eq_cases, <- succ_lt_mono, succ_inj_wd. Qed. Theorem lt_0_1 : 0 < 1. Proof. apply lt_succ_diag_r. Qed. Theorem le_0_1 : 0 <= 1. Proof. apply le_succ_diag_r. Qed. Theorem lt_1_l : forall n m, 0 < n -> n < m -> 1 < m. Proof. intros n m H1 H2. apply <- le_succ_l in H1. order. Qed. (** More Trichotomy, decidability and double negation elimination. *) (** The following theorem is cleary redundant, but helps not to remember whether one has to say le_gt_cases or lt_ge_cases *) Theorem lt_ge_cases : forall n m, n < m \/ n >= m. Proof. intros n m; destruct (le_gt_cases m n); intuition order. Qed. Theorem le_ge_cases : forall n m, n <= m \/ n >= m. Proof. intros n m; destruct (le_gt_cases n m); intuition order. Qed. Theorem lt_gt_cases : forall n m, n ~= m <-> n < m \/ n > m. Proof. intros n m; destruct (lt_trichotomy n m); intuition order. Qed. (** Decidability of equality, even though true in each finite ring, does not have a uniform proof. Otherwise, the proof for two fixed numbers would reduce to a normal form that will say if the numbers are equal or not, which cannot be true in all finite rings. Therefore, we prove decidability in the presence of order. *) Theorem eq_decidable : forall n m, decidable (n == m). Proof. intros n m; destruct (lt_trichotomy n m) as [ | [ | ]]; (right; order) || (left; order). Qed. (** DNE stands for double-negation elimination *) Theorem eq_dne : forall n m, ~ ~ n == m <-> n == m. Proof. intros n m; split; intro H. destruct (eq_decidable n m) as [H1 | H1]. assumption. false_hyp H1 H. intro H1; now apply H1. Qed. Theorem le_ngt : forall n m, n <= m <-> ~ n > m. Proof. intuition order. Qed. (** Redundant but useful *) Theorem nlt_ge : forall n m, ~ n < m <-> n >= m. Proof. intuition order. Qed. Theorem lt_decidable : forall n m, decidable (n < m). Proof. intros n m; destruct (le_gt_cases m n); [right|left]; order. Qed. Theorem lt_dne : forall n m, ~ ~ n < m <-> n < m. Proof. intros n m; split; intro H. destruct (lt_decidable n m) as [H1 | H1]; [assumption | false_hyp H1 H]. intro H1; false_hyp H H1. Qed. Theorem nle_gt : forall n m, ~ n <= m <-> n > m. Proof. intuition order. Qed. (** Redundant but useful *) Theorem lt_nge : forall n m, n < m <-> ~ n >= m. Proof. intuition order. Qed. Theorem le_decidable : forall n m, decidable (n <= m). Proof. intros n m; destruct (le_gt_cases n m); [left|right]; order. Qed. Theorem le_dne : forall n m, ~ ~ n <= m <-> n <= m. Proof. intros n m; split; intro H. destruct (le_decidable n m) as [H1 | H1]; [assumption | false_hyp H1 H]. intro H1; false_hyp H H1. Qed. Theorem nlt_succ_r : forall n m, ~ m < S n <-> n < m. Proof. intros n m; rewrite lt_succ_r. intuition order. Qed. (** The difference between integers and natural numbers is that for every integer there is a predecessor, which is not true for natural numbers. However, for both classes, every number that is bigger than some other number has a predecessor. The proof of this fact by regular induction does not go through, so we need to use strong (course-of-value) induction. *) Lemma lt_exists_pred_strong : forall z n m, z < m -> m <= n -> exists k, m == S k /\ z <= k. Proof. intro z; nzinduct n z. order. intro n; split; intros IH m H1 H2. apply -> le_succ_r in H2. destruct H2 as [H2 | H2]. now apply IH. exists n. now split; [| rewrite <- lt_succ_r; rewrite <- H2]. apply IH. assumption. now apply le_le_succ_r. Qed. Theorem lt_exists_pred : forall z n, z < n -> exists k, n == S k /\ z <= k. Proof. intros z n H; apply lt_exists_pred_strong with (z := z) (n := n). assumption. apply le_refl. Qed. (** Stronger variant of induction with assumptions n >= 0 (n < 0) in the induction step *) Section Induction. Variable A : t -> Prop. Hypothesis A_wd : Proper (eq==>iff) A. Section Center. Variable z : t. (* A z is the basis of induction *) Section RightInduction. Let A' (n : t) := forall m, z <= m -> m < n -> A m. Let right_step := forall n, z <= n -> A n -> A (S n). Let right_step' := forall n, z <= n -> A' n -> A n. Let right_step'' := forall n, A' n <-> A' (S n). Lemma rs_rs' : A z -> right_step -> right_step'. Proof. intros Az RS n H1 H2. le_elim H1. apply lt_exists_pred in H1. destruct H1 as [k [H3 H4]]. rewrite H3. apply RS; trivial. apply H2; trivial. rewrite H3; apply lt_succ_diag_r. rewrite <- H1; apply Az. Qed. Lemma rs'_rs'' : right_step' -> right_step''. Proof. intros RS' n; split; intros H1 m H2 H3. apply -> lt_succ_r in H3; le_elim H3; [now apply H1 | rewrite H3 in *; now apply RS']. apply H1; [assumption | now apply lt_lt_succ_r]. Qed. Lemma rbase : A' z. Proof. intros m H1 H2. apply -> le_ngt in H1. false_hyp H2 H1. Qed. Lemma A'A_right : (forall n, A' n) -> forall n, z <= n -> A n. Proof. intros H1 n H2. apply H1 with (n := S n); [assumption | apply lt_succ_diag_r]. Qed. Theorem strong_right_induction: right_step' -> forall n, z <= n -> A n. Proof. intro RS'; apply A'A_right; unfold A'; nzinduct n z; [apply rbase | apply rs'_rs''; apply RS']. Qed. Theorem right_induction : A z -> right_step -> forall n, z <= n -> A n. Proof. intros Az RS; apply strong_right_induction; now apply rs_rs'. Qed. Theorem right_induction' : (forall n, n <= z -> A n) -> right_step -> forall n, A n. Proof. intros L R n. destruct (lt_trichotomy n z) as [H | [H | H]]. apply L; now apply lt_le_incl. apply L; now apply eq_le_incl. apply right_induction. apply L; now apply eq_le_incl. assumption. now apply lt_le_incl. Qed. Theorem strong_right_induction' : (forall n, n <= z -> A n) -> right_step' -> forall n, A n. Proof. intros L R n. destruct (lt_trichotomy n z) as [H | [H | H]]. apply L; now apply lt_le_incl. apply L; now apply eq_le_incl. apply strong_right_induction. assumption. now apply lt_le_incl. Qed. End RightInduction. Section LeftInduction. Let A' (n : t) := forall m, m <= z -> n <= m -> A m. Let left_step := forall n, n < z -> A (S n) -> A n. Let left_step' := forall n, n <= z -> A' (S n) -> A n. Let left_step'' := forall n, A' n <-> A' (S n). Lemma ls_ls' : A z -> left_step -> left_step'. Proof. intros Az LS n H1 H2. le_elim H1. apply LS; trivial. apply H2; [now apply <- le_succ_l | now apply eq_le_incl]. rewrite H1; apply Az. Qed. Lemma ls'_ls'' : left_step' -> left_step''. Proof. intros LS' n; split; intros H1 m H2 H3. apply -> le_succ_l in H3. apply lt_le_incl in H3. now apply H1. le_elim H3. apply <- le_succ_l in H3. now apply H1. rewrite <- H3 in *; now apply LS'. Qed. Lemma lbase : A' (S z). Proof. intros m H1 H2. apply -> le_succ_l in H2. apply -> le_ngt in H1. false_hyp H2 H1. Qed. Lemma A'A_left : (forall n, A' n) -> forall n, n <= z -> A n. Proof. intros H1 n H2. apply H1 with (n := n); [assumption | now apply eq_le_incl]. Qed. Theorem strong_left_induction: left_step' -> forall n, n <= z -> A n. Proof. intro LS'; apply A'A_left; unfold A'; nzinduct n (S z); [apply lbase | apply ls'_ls''; apply LS']. Qed. Theorem left_induction : A z -> left_step -> forall n, n <= z -> A n. Proof. intros Az LS; apply strong_left_induction; now apply ls_ls'. Qed. Theorem left_induction' : (forall n, z <= n -> A n) -> left_step -> forall n, A n. Proof. intros R L n. destruct (lt_trichotomy n z) as [H | [H | H]]. apply left_induction. apply R. now apply eq_le_incl. assumption. now apply lt_le_incl. rewrite H; apply R; now apply eq_le_incl. apply R; now apply lt_le_incl. Qed. Theorem strong_left_induction' : (forall n, z <= n -> A n) -> left_step' -> forall n, A n. Proof. intros R L n. destruct (lt_trichotomy n z) as [H | [H | H]]. apply strong_left_induction; auto. now apply lt_le_incl. rewrite H; apply R; now apply eq_le_incl. apply R; now apply lt_le_incl. Qed. End LeftInduction. Theorem order_induction : A z -> (forall n, z <= n -> A n -> A (S n)) -> (forall n, n < z -> A (S n) -> A n) -> forall n, A n. Proof. intros Az RS LS n. destruct (lt_trichotomy n z) as [H | [H | H]]. now apply left_induction; [| | apply lt_le_incl]. now rewrite H. now apply right_induction; [| | apply lt_le_incl]. Qed. Theorem order_induction' : A z -> (forall n, z <= n -> A n -> A (S n)) -> (forall n, n <= z -> A n -> A (P n)) -> forall n, A n. Proof. intros Az AS AP n; apply order_induction; try assumption. intros m H1 H2. apply AP in H2; [| now apply <- le_succ_l]. apply -> (A_wd (P (S m)) m); [assumption | apply pred_succ]. Qed. End Center. Theorem order_induction_0 : A 0 -> (forall n, 0 <= n -> A n -> A (S n)) -> (forall n, n < 0 -> A (S n) -> A n) -> forall n, A n. Proof (order_induction 0). Theorem order_induction'_0 : A 0 -> (forall n, 0 <= n -> A n -> A (S n)) -> (forall n, n <= 0 -> A n -> A (P n)) -> forall n, A n. Proof (order_induction' 0). (** Elimintation principle for < *) Theorem lt_ind : forall (n : t), A (S n) -> (forall m, n < m -> A m -> A (S m)) -> forall m, n < m -> A m. Proof. intros n H1 H2 m H3. apply right_induction with (S n); [assumption | | now apply <- le_succ_l]. intros; apply H2; try assumption. now apply -> le_succ_l. Qed. (** Elimintation principle for <= *) Theorem le_ind : forall (n : t), A n -> (forall m, n <= m -> A m -> A (S m)) -> forall m, n <= m -> A m. Proof. intros n H1 H2 m H3. now apply right_induction with n. Qed. End Induction. Tactic Notation "nzord_induct" ident(n) := induction_maker n ltac:(apply order_induction_0). Tactic Notation "nzord_induct" ident(n) constr(z) := induction_maker n ltac:(apply order_induction with z). Section WF. Variable z : t. Let Rlt (n m : t) := z <= n /\ n < m. Let Rgt (n m : t) := m < n /\ n <= z. Instance Rlt_wd : Proper (eq ==> eq ==> iff) Rlt. Proof. intros x1 x2 H1 x3 x4 H2; unfold Rlt. rewrite H1; now rewrite H2. Qed. Instance Rgt_wd : Proper (eq ==> eq ==> iff) Rgt. Proof. intros x1 x2 H1 x3 x4 H2; unfold Rgt; rewrite H1; now rewrite H2. Qed. Instance Acc_lt_wd : Proper (eq==>iff) (Acc Rlt). Proof. intros x1 x2 H; split; intro H1; destruct H1 as [H2]; constructor; intros; apply H2; now (rewrite H || rewrite <- H). Qed. Instance Acc_gt_wd : Proper (eq==>iff) (Acc Rgt). Proof. intros x1 x2 H; split; intro H1; destruct H1 as [H2]; constructor; intros; apply H2; now (rewrite H || rewrite <- H). Qed. Theorem lt_wf : well_founded Rlt. Proof. unfold well_founded. apply strong_right_induction' with (z := z). apply Acc_lt_wd. intros n H; constructor; intros y [H1 H2]. apply <- nle_gt in H2. elim H2. now apply le_trans with z. intros n H1 H2; constructor; intros m [H3 H4]. now apply H2. Qed. Theorem gt_wf : well_founded Rgt. Proof. unfold well_founded. apply strong_left_induction' with (z := z). apply Acc_gt_wd. intros n H; constructor; intros y [H1 H2]. apply <- nle_gt in H2. elim H2. now apply le_lt_trans with n. intros n H1 H2; constructor; intros m [H3 H4]. apply H2. assumption. now apply <- le_succ_l. Qed. End WF. End NZOrderPropSig. Module NZOrderPropFunct (NZ : NZOrdSig) := NZBasePropSig NZ <+ NZOrderPropSig NZ. (** If we have moreover a [compare] function, we can build an [OrderedType] structure. *) Module NZOrderedTypeFunct (NZ : NZDecOrdSig') <: DecidableTypeFull <: OrderedTypeFull := NZ <+ NZOrderPropFunct <+ Compare2EqBool <+ HasEqBool2Dec.