(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n <= m. Proof. intros; apply <- NZlt_eq_cases; now left. Qed. Theorem NZeq_le_incl : forall n m : NZ, n == m -> n <= m. Proof. intros; apply <- NZlt_eq_cases; now right. Qed. Lemma NZlt_stepl : forall x y z : NZ, x < y -> x == z -> z < y. Proof. intros x y z H1 H2; now rewrite <- H2. Qed. Lemma NZlt_stepr : forall x y z : NZ, x < y -> y == z -> x < z. Proof. intros x y z H1 H2; now rewrite <- H2. Qed. Lemma NZle_stepl : forall x y z : NZ, x <= y -> x == z -> z <= y. Proof. intros x y z H1 H2; now rewrite <- H2. Qed. Lemma NZle_stepr : forall x y z : NZ, x <= y -> y == z -> x <= z. Proof. intros x y z H1 H2; now rewrite <- H2. Qed. Declare Left Step NZlt_stepl. Declare Right Step NZlt_stepr. Declare Left Step NZle_stepl. Declare Right Step NZle_stepr. Theorem NZlt_neq : forall n m : NZ, n < m -> n ~= m. Proof. intros n m H1 H2; rewrite H2 in H1; false_hyp H1 NZlt_irrefl. Qed. Theorem NZle_neq : forall n m : NZ, n < m <-> n <= m /\ n ~= m. Proof. intros n m; split; [intro H | intros [H1 H2]]. split. now apply NZlt_le_incl. now apply NZlt_neq. le_elim H1. assumption. false_hyp H1 H2. Qed. Theorem NZle_refl : forall n : NZ, n <= n. Proof. intro; now apply NZeq_le_incl. Qed. Theorem NZlt_succ_diag_r : forall n : NZ, n < S n. Proof. intro n. rewrite NZlt_succ_r. now apply NZeq_le_incl. Qed. Theorem NZle_succ_diag_r : forall n : NZ, n <= S n. Proof. intro; apply NZlt_le_incl; apply NZlt_succ_diag_r. Qed. Theorem NZlt_0_1 : 0 < 1. Proof. apply NZlt_succ_diag_r. Qed. Theorem NZle_0_1 : 0 <= 1. Proof. apply NZle_succ_diag_r. Qed. Theorem NZlt_lt_succ_r : forall n m : NZ, n < m -> n < S m. Proof. intros. rewrite NZlt_succ_r. now apply NZlt_le_incl. Qed. Theorem NZle_le_succ_r : forall n m : NZ, n <= m -> n <= S m. Proof. intros n m H. rewrite <- NZlt_succ_r in H. now apply NZlt_le_incl. Qed. Theorem NZle_succ_r : forall n m : NZ, n <= S m <-> n <= m \/ n == S m. Proof. intros n m; rewrite NZlt_eq_cases. now rewrite NZlt_succ_r. Qed. (* The following theorem is a special case of neq_succ_iter_l below, but we prove it separately *) Theorem NZneq_succ_diag_l : forall n : NZ, S n ~= n. Proof. intros n H. pose proof (NZlt_succ_diag_r n) as H1. rewrite H in H1. false_hyp H1 NZlt_irrefl. Qed. Theorem NZneq_succ_diag_r : forall n : NZ, n ~= S n. Proof. intro n; apply NZneq_symm; apply NZneq_succ_diag_l. Qed. Theorem NZnlt_succ_diag_l : forall n : NZ, ~ S n < n. Proof. intros n H; apply NZlt_lt_succ_r in H. false_hyp H NZlt_irrefl. Qed. Theorem NZnle_succ_diag_l : forall n : NZ, ~ S n <= n. Proof. intros n H; le_elim H. false_hyp H NZnlt_succ_diag_l. false_hyp H NZneq_succ_diag_l. Qed. Theorem NZle_succ_l : forall n m : NZ, S n <= m <-> n < m. Proof. intro n; NZinduct m n. setoid_replace (n < n) with False using relation iff by (apply -> neg_false; apply NZlt_irrefl). now setoid_replace (S n <= n) with False using relation iff by (apply -> neg_false; apply NZnle_succ_diag_l). intro m. rewrite NZlt_succ_r. rewrite NZle_succ_r. rewrite NZsucc_inj_wd. rewrite (NZlt_eq_cases n m). rewrite or_cancel_r. reflexivity. intros H1 H2; rewrite H2 in H1; false_hyp H1 NZnle_succ_diag_l. apply NZlt_neq. Qed. Theorem NZlt_succ_l : forall n m : NZ, S n < m -> n < m. Proof. intros n m H; apply -> NZle_succ_l; now apply NZlt_le_incl. Qed. Theorem NZsucc_lt_mono : forall n m : NZ, n < m <-> S n < S m. Proof. intros n m. rewrite <- NZle_succ_l. symmetry. apply NZlt_succ_r. Qed. Theorem NZsucc_le_mono : forall n m : NZ, n <= m <-> S n <= S m. Proof. intros n m. do 2 rewrite NZlt_eq_cases. rewrite <- NZsucc_lt_mono; now rewrite NZsucc_inj_wd. Qed. Theorem NZlt_asymm : forall n m, n < m -> ~ m < n. Proof. intros n m; NZinduct n m. intros H _; false_hyp H NZlt_irrefl. intro n; split; intros H H1 H2. apply NZlt_succ_l in H1. apply -> NZlt_succ_r in H2. le_elim H2. now apply H. rewrite H2 in H1; false_hyp H1 NZlt_irrefl. apply NZlt_lt_succ_r in H2. apply <- NZle_succ_l in H1. le_elim H1. now apply H. rewrite H1 in H2; false_hyp H2 NZlt_irrefl. Qed. Theorem NZlt_trans : forall n m p : NZ, n < m -> m < p -> n < p. Proof. intros n m p; NZinduct p m. intros _ H; false_hyp H NZlt_irrefl. intro p. do 2 rewrite NZlt_succ_r. split; intros H H1 H2. apply NZlt_le_incl; le_elim H2; [now apply H | now rewrite H2 in H1]. assert (n <= p) as H3. apply H. assumption. now apply NZlt_le_incl. le_elim H3. assumption. rewrite <- H3 in H2. elimtype False; now apply (NZlt_asymm n m). Qed. Theorem NZle_trans : forall n m p : NZ, n <= m -> m <= p -> n <= p. Proof. intros n m p H1 H2; le_elim H1. le_elim H2. apply NZlt_le_incl; now apply NZlt_trans with (m := m). apply NZlt_le_incl; now rewrite <- H2. now rewrite H1. Qed. Theorem NZle_lt_trans : forall n m p : NZ, n <= m -> m < p -> n < p. Proof. intros n m p H1 H2; le_elim H1. now apply NZlt_trans with (m := m). now rewrite H1. Qed. Theorem NZlt_le_trans : forall n m p : NZ, n < m -> m <= p -> n < p. Proof. intros n m p H1 H2; le_elim H2. now apply NZlt_trans with (m := m). now rewrite <- H2. Qed. Theorem NZle_antisymm : forall n m : NZ, n <= m -> m <= n -> n == m. Proof. intros n m H1 H2; now (le_elim H1; le_elim H2); [elimtype False; apply (NZlt_asymm n m) | | |]. Qed. Theorem NZlt_1_l : forall n m : NZ, 0 < n -> n < m -> 1 < m. Proof. intros n m H1 H2. apply <- NZle_succ_l in H1. now apply NZle_lt_trans with n. Qed. (** Trichotomy, decidability, and double negation elimination *) Theorem NZlt_trichotomy : forall n m : NZ, n < m \/ n == m \/ m < n. Proof. intros n m; NZinduct n m. right; now left. intro n; rewrite NZlt_succ_r. stepr ((S n < m \/ S n == m) \/ m <= n) by tauto. rewrite <- (NZlt_eq_cases (S n) m). setoid_replace (n == m) with (m == n) using relation iff by now split. stepl (n < m \/ m < n \/ m == n) by tauto. rewrite <- NZlt_eq_cases. apply or_iff_compat_r. symmetry; apply NZle_succ_l. Qed. (* Decidability of equality, even though true in each finite ring, does not have a uniform proof. Otherwise, the proof for two fixed numbers would reduce to a normal form that will say if the numbers are equal or not, which cannot be true in all finite rings. Therefore, we prove decidability in the presence of order. *) Theorem NZeq_dec : forall n m : NZ, decidable (n == m). Proof. intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]]. right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl. now left. right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl. Qed. (* DNE stands for double-negation elimination *) Theorem NZeq_dne : forall n m, ~ ~ n == m <-> n == m. Proof. intros n m; split; intro H. destruct (NZeq_dec n m) as [H1 | H1]. assumption. false_hyp H1 H. intro H1; now apply H1. Qed. Theorem NZlt_gt_cases : forall n m : NZ, n ~= m <-> n < m \/ n > m. Proof. intros n m; split. pose proof (NZlt_trichotomy n m); tauto. intros H H1; destruct H as [H | H]; rewrite H1 in H; false_hyp H NZlt_irrefl. Qed. Theorem NZle_gt_cases : forall n m : NZ, n <= m \/ n > m. Proof. intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]]. left; now apply NZlt_le_incl. left; now apply NZeq_le_incl. now right. Qed. (* The following theorem is cleary redundant, but helps not to remember whether one has to say le_gt_cases or lt_ge_cases *) Theorem NZlt_ge_cases : forall n m : NZ, n < m \/ n >= m. Proof. intros n m; destruct (NZle_gt_cases m n); try (now left); try (now right). Qed. Theorem NZle_ge_cases : forall n m : NZ, n <= m \/ n >= m. Proof. intros n m; destruct (NZle_gt_cases n m) as [H | H]. now left. right; now apply NZlt_le_incl. Qed. Theorem NZle_ngt : forall n m : NZ, n <= m <-> ~ n > m. Proof. intros n m. split; intro H; [intro H1 |]. eapply NZle_lt_trans in H; [| eassumption ..]. false_hyp H NZlt_irrefl. destruct (NZle_gt_cases n m) as [H1 | H1]. assumption. false_hyp H1 H. Qed. (* Redundant but useful *) Theorem NZnlt_ge : forall n m : NZ, ~ n < m <-> n >= m. Proof. intros n m; symmetry; apply NZle_ngt. Qed. Theorem NZlt_dec : forall n m : NZ, decidable (n < m). Proof. intros n m; destruct (NZle_gt_cases m n); [right; now apply -> NZle_ngt | now left]. Qed. Theorem NZlt_dne : forall n m, ~ ~ n < m <-> n < m. Proof. intros n m; split; intro H; [destruct (NZlt_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] | intro H1; false_hyp H H1]. Qed. Theorem NZnle_gt : forall n m : NZ, ~ n <= m <-> n > m. Proof. intros n m. rewrite NZle_ngt. apply NZlt_dne. Qed. (* Redundant but useful *) Theorem NZlt_nge : forall n m : NZ, n < m <-> ~ n >= m. Proof. intros n m; symmetry; apply NZnle_gt. Qed. Theorem NZle_dec : forall n m : NZ, decidable (n <= m). Proof. intros n m; destruct (NZle_gt_cases n m); [now left | right; now apply <- NZnle_gt]. Qed. Theorem NZle_dne : forall n m : NZ, ~ ~ n <= m <-> n <= m. Proof. intros n m; split; intro H; [destruct (NZle_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] | intro H1; false_hyp H H1]. Qed. Theorem NZnlt_succ_r : forall n m : NZ, ~ m < S n <-> n < m. Proof. intros n m; rewrite NZlt_succ_r; apply NZnle_gt. Qed. (* The difference between integers and natural numbers is that for every integer there is a predecessor, which is not true for natural numbers. However, for both classes, every number that is bigger than some other number has a predecessor. The proof of this fact by regular induction does not go through, so we need to use strong (course-of-value) induction. *) Lemma NZlt_exists_pred_strong : forall z n m : NZ, z < m -> m <= n -> exists k : NZ, m == S k /\ z <= k. Proof. intro z; NZinduct n z. intros m H1 H2; apply <- NZnle_gt in H1; false_hyp H2 H1. intro n; split; intros IH m H1 H2. apply -> NZle_succ_r in H2; destruct H2 as [H2 | H2]. now apply IH. exists n. now split; [| rewrite <- NZlt_succ_r; rewrite <- H2]. apply IH. assumption. now apply NZle_le_succ_r. Qed. Theorem NZlt_exists_pred : forall z n : NZ, z < n -> exists k : NZ, n == S k /\ z <= k. Proof. intros z n H; apply NZlt_exists_pred_strong with (z := z) (n := n). assumption. apply NZle_refl. Qed. (** A corollary of having an order is that NZ is infinite *) (* This section about infinity of NZ relies on the type nat and can be safely removed *) Definition NZsucc_iter (n : nat) (m : NZ) := nat_rect (fun _ => NZ) m (fun _ l => S l) n. Theorem NZlt_succ_iter_r : forall (n : nat) (m : NZ), m < NZsucc_iter (Datatypes.S n) m. Proof. intros n m; induction n as [| n IH]; simpl in *. apply NZlt_succ_diag_r. now apply NZlt_lt_succ_r. Qed. Theorem NZneq_succ_iter_l : forall (n : nat) (m : NZ), NZsucc_iter (Datatypes.S n) m ~= m. Proof. intros n m H. pose proof (NZlt_succ_iter_r n m) as H1. rewrite H in H1. false_hyp H1 NZlt_irrefl. Qed. (* End of the section about the infinity of NZ *) (** Stronger variant of induction with assumptions n >= 0 (n < 0) in the induction step *) Section Induction. Variable A : NZ -> Prop. Hypothesis A_wd : predicate_wd NZeq A. Add Morphism A with signature NZeq ==> iff as A_morph. Proof. apply A_wd. Qed. Section Center. Variable z : NZ. (* A z is the basis of induction *) Section RightInduction. Let A' (n : NZ) := forall m : NZ, z <= m -> m < n -> A m. Let right_step := forall n : NZ, z <= n -> A n -> A (S n). Let right_step' := forall n : NZ, z <= n -> A' n -> A n. Let right_step'' := forall n : NZ, A' n <-> A' (S n). Lemma NZrs_rs' : A z -> right_step -> right_step'. Proof. intros Az RS n H1 H2. le_elim H1. apply NZlt_exists_pred in H1. destruct H1 as [k [H3 H4]]. rewrite H3. apply RS; [assumption | apply H2; [assumption | rewrite H3; apply NZlt_succ_diag_r]]. rewrite <- H1; apply Az. Qed. Lemma NZrs'_rs'' : right_step' -> right_step''. Proof. intros RS' n; split; intros H1 m H2 H3. apply -> NZlt_succ_r in H3; le_elim H3; [now apply H1 | rewrite H3 in *; now apply RS']. apply H1; [assumption | now apply NZlt_lt_succ_r]. Qed. Lemma NZrbase : A' z. Proof. intros m H1 H2. apply -> NZle_ngt in H1. false_hyp H2 H1. Qed. Lemma NZA'A_right : (forall n : NZ, A' n) -> forall n : NZ, z <= n -> A n. Proof. intros H1 n H2. apply H1 with (n := S n); [assumption | apply NZlt_succ_diag_r]. Qed. Theorem NZstrong_right_induction: right_step' -> forall n : NZ, z <= n -> A n. Proof. intro RS'; apply NZA'A_right; unfold A'; NZinduct n z; [apply NZrbase | apply NZrs'_rs''; apply RS']. Qed. Theorem NZright_induction : A z -> right_step -> forall n : NZ, z <= n -> A n. Proof. intros Az RS; apply NZstrong_right_induction; now apply NZrs_rs'. Qed. Theorem NZright_induction' : (forall n : NZ, n <= z -> A n) -> right_step -> forall n : NZ, A n. Proof. intros L R n. destruct (NZlt_trichotomy n z) as [H | [H | H]]. apply L; now apply NZlt_le_incl. apply L; now apply NZeq_le_incl. apply NZright_induction. apply L; now apply NZeq_le_incl. assumption. now apply NZlt_le_incl. Qed. Theorem NZstrong_right_induction' : (forall n : NZ, n <= z -> A n) -> right_step' -> forall n : NZ, A n. Proof. intros L R n. destruct (NZlt_trichotomy n z) as [H | [H | H]]. apply L; now apply NZlt_le_incl. apply L; now apply NZeq_le_incl. apply NZstrong_right_induction. assumption. now apply NZlt_le_incl. Qed. End RightInduction. Section LeftInduction. Let A' (n : NZ) := forall m : NZ, m <= z -> n <= m -> A m. Let left_step := forall n : NZ, n < z -> A (S n) -> A n. Let left_step' := forall n : NZ, n <= z -> A' (S n) -> A n. Let left_step'' := forall n : NZ, A' n <-> A' (S n). Lemma NZls_ls' : A z -> left_step -> left_step'. Proof. intros Az LS n H1 H2. le_elim H1. apply LS; [assumption | apply H2; [now apply <- NZle_succ_l | now apply NZeq_le_incl]]. rewrite H1; apply Az. Qed. Lemma NZls'_ls'' : left_step' -> left_step''. Proof. intros LS' n; split; intros H1 m H2 H3. apply -> NZle_succ_l in H3. apply NZlt_le_incl in H3. now apply H1. le_elim H3. apply <- NZle_succ_l in H3. now apply H1. rewrite <- H3 in *; now apply LS'. Qed. Lemma NZlbase : A' (S z). Proof. intros m H1 H2. apply -> NZle_succ_l in H2. apply -> NZle_ngt in H1. false_hyp H2 H1. Qed. Lemma NZA'A_left : (forall n : NZ, A' n) -> forall n : NZ, n <= z -> A n. Proof. intros H1 n H2. apply H1 with (n := n); [assumption | now apply NZeq_le_incl]. Qed. Theorem NZstrong_left_induction: left_step' -> forall n : NZ, n <= z -> A n. Proof. intro LS'; apply NZA'A_left; unfold A'; NZinduct n (S z); [apply NZlbase | apply NZls'_ls''; apply LS']. Qed. Theorem NZleft_induction : A z -> left_step -> forall n : NZ, n <= z -> A n. Proof. intros Az LS; apply NZstrong_left_induction; now apply NZls_ls'. Qed. Theorem NZleft_induction' : (forall n : NZ, z <= n -> A n) -> left_step -> forall n : NZ, A n. Proof. intros R L n. destruct (NZlt_trichotomy n z) as [H | [H | H]]. apply NZleft_induction. apply R. now apply NZeq_le_incl. assumption. now apply NZlt_le_incl. rewrite H; apply R; now apply NZeq_le_incl. apply R; now apply NZlt_le_incl. Qed. Theorem NZstrong_left_induction' : (forall n : NZ, z <= n -> A n) -> left_step' -> forall n : NZ, A n. Proof. intros R L n. destruct (NZlt_trichotomy n z) as [H | [H | H]]. apply NZstrong_left_induction; auto. now apply NZlt_le_incl. rewrite H; apply R; now apply NZeq_le_incl. apply R; now apply NZlt_le_incl. Qed. End LeftInduction. Theorem NZorder_induction : A z -> (forall n : NZ, z <= n -> A n -> A (S n)) -> (forall n : NZ, n < z -> A (S n) -> A n) -> forall n : NZ, A n. Proof. intros Az RS LS n. destruct (NZlt_trichotomy n z) as [H | [H | H]]. now apply NZleft_induction; [| | apply NZlt_le_incl]. now rewrite H. now apply NZright_induction; [| | apply NZlt_le_incl]. Qed. Theorem NZorder_induction' : A z -> (forall n : NZ, z <= n -> A n -> A (S n)) -> (forall n : NZ, n <= z -> A n -> A (P n)) -> forall n : NZ, A n. Proof. intros Az AS AP n; apply NZorder_induction; try assumption. intros m H1 H2. apply AP in H2; [| now apply <- NZle_succ_l]. unfold predicate_wd, fun_wd in A_wd; apply -> (A_wd (P (S m)) m); [assumption | apply NZpred_succ]. Qed. End Center. Theorem NZorder_induction_0 : A 0 -> (forall n : NZ, 0 <= n -> A n -> A (S n)) -> (forall n : NZ, n < 0 -> A (S n) -> A n) -> forall n : NZ, A n. Proof (NZorder_induction 0). Theorem NZorder_induction'_0 : A 0 -> (forall n : NZ, 0 <= n -> A n -> A (S n)) -> (forall n : NZ, n <= 0 -> A n -> A (P n)) -> forall n : NZ, A n. Proof (NZorder_induction' 0). (** Elimintation principle for < *) Theorem NZlt_ind : forall (n : NZ), A (S n) -> (forall m : NZ, n < m -> A m -> A (S m)) -> forall m : NZ, n < m -> A m. Proof. intros n H1 H2 m H3. apply NZright_induction with (S n); [assumption | | now apply <- NZle_succ_l]. intros; apply H2; try assumption. now apply -> NZle_succ_l. Qed. (** Elimintation principle for <= *) Theorem NZle_ind : forall (n : NZ), A n -> (forall m : NZ, n <= m -> A m -> A (S m)) -> forall m : NZ, n <= m -> A m. Proof. intros n H1 H2 m H3. now apply NZright_induction with n. Qed. End Induction. Tactic Notation "NZord_induct" ident(n) := induction_maker n ltac:(apply NZorder_induction_0). Tactic Notation "NZord_induct" ident(n) constr(z) := induction_maker n ltac:(apply NZorder_induction with z). Section WF. Variable z : NZ. Let Rlt (n m : NZ) := z <= n /\ n < m. Let Rgt (n m : NZ) := m < n /\ n <= z. Add Morphism Rlt with signature NZeq ==> NZeq ==> iff as Rlt_wd. Proof. intros x1 x2 H1 x3 x4 H2; unfold Rlt; rewrite H1; now rewrite H2. Qed. Add Morphism Rgt with signature NZeq ==> NZeq ==> iff as Rgt_wd. Proof. intros x1 x2 H1 x3 x4 H2; unfold Rgt; rewrite H1; now rewrite H2. Qed. Lemma NZAcc_lt_wd : predicate_wd NZeq (Acc Rlt). Proof. unfold predicate_wd, fun_wd. intros x1 x2 H; split; intro H1; destruct H1 as [H2]; constructor; intros; apply H2; now (rewrite H || rewrite <- H). Qed. Lemma NZAcc_gt_wd : predicate_wd NZeq (Acc Rgt). Proof. unfold predicate_wd, fun_wd. intros x1 x2 H; split; intro H1; destruct H1 as [H2]; constructor; intros; apply H2; now (rewrite H || rewrite <- H). Qed. Theorem NZlt_wf : well_founded Rlt. Proof. unfold well_founded. apply NZstrong_right_induction' with (z := z). apply NZAcc_lt_wd. intros n H; constructor; intros y [H1 H2]. apply <- NZnle_gt in H2. elim H2. now apply NZle_trans with z. intros n H1 H2; constructor; intros m [H3 H4]. now apply H2. Qed. Theorem NZgt_wf : well_founded Rgt. Proof. unfold well_founded. apply NZstrong_left_induction' with (z := z). apply NZAcc_gt_wd. intros n H; constructor; intros y [H1 H2]. apply <- NZnle_gt in H2. elim H2. now apply NZle_lt_trans with n. intros n H1 H2; constructor; intros m [H3 H4]. apply H2. assumption. now apply <- NZle_succ_l. Qed. End WF. End NZOrderPropFunct.