(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* (p * n < p * m <-> q * n + m < q * m + n). Proof. intros p q n m H. rewrite <- H. nzsimpl. rewrite <- ! add_assoc, (add_comm n m). now rewrite <- add_lt_mono_r. Qed. Theorem mul_lt_mono_pos_l : forall p n m, 0 < p -> (n < m <-> p * n < p * m). Proof. intros p n m Hp. revert n m. apply lt_ind with (4:=Hp). solve_proper. intros. now nzsimpl. clear p Hp. intros p Hp IH n m. nzsimpl. assert (LR : forall n m, n < m -> p * n + n < p * m + m) by (intros n1 m1 H; apply add_lt_mono; trivial; now rewrite <- IH). split; intros H. now apply LR. destruct (lt_trichotomy n m) as [LT|[EQ|GT]]; trivial. rewrite EQ in H. order. apply LR in GT. order. Qed. Theorem mul_lt_mono_pos_r : forall p n m, 0 < p -> (n < m <-> n * p < m * p). Proof. intros p n m. rewrite (mul_comm n p), (mul_comm m p). now apply mul_lt_mono_pos_l. Qed. Theorem mul_lt_mono_neg_l : forall p n m, p < 0 -> (n < m <-> p * m < p * n). Proof. nzord_induct p. order. intros p Hp _ n m Hp'. apply lt_succ_l in Hp'. order. intros p Hp IH n m _. apply le_succ_l in Hp. le_elim Hp. assert (LR : forall n m, n < m -> p * m < p * n). intros n1 m1 H. apply (le_lt_add_lt n1 m1). now apply lt_le_incl. rewrite <- 2 mul_succ_l. now rewrite <- IH. split; intros H. now apply LR. destruct (lt_trichotomy n m) as [LT|[EQ|GT]]; trivial. rewrite EQ in H. order. apply LR in GT. order. rewrite (mul_lt_pred p (S p)), Hp; now nzsimpl. Qed. Theorem mul_lt_mono_neg_r : forall p n m, p < 0 -> (n < m <-> m * p < n * p). Proof. intros p n m. rewrite (mul_comm n p), (mul_comm m p). now apply mul_lt_mono_neg_l. Qed. Theorem mul_le_mono_nonneg_l : forall n m p, 0 <= p -> n <= m -> p * n <= p * m. Proof. intros n m p H1 H2. le_elim H1. le_elim H2. apply lt_le_incl. now apply mul_lt_mono_pos_l. apply eq_le_incl; now rewrite H2. apply eq_le_incl; rewrite <- H1; now do 2 rewrite mul_0_l. Qed. Theorem mul_le_mono_nonpos_l : forall n m p, p <= 0 -> n <= m -> p * m <= p * n. Proof. intros n m p H1 H2. le_elim H1. le_elim H2. apply lt_le_incl. now apply mul_lt_mono_neg_l. apply eq_le_incl; now rewrite H2. apply eq_le_incl; rewrite H1; now do 2 rewrite mul_0_l. Qed. Theorem mul_le_mono_nonneg_r : forall n m p, 0 <= p -> n <= m -> n * p <= m * p. Proof. intros n m p H1 H2; rewrite (mul_comm n p), (mul_comm m p); now apply mul_le_mono_nonneg_l. Qed. Theorem mul_le_mono_nonpos_r : forall n m p, p <= 0 -> n <= m -> m * p <= n * p. Proof. intros n m p H1 H2; rewrite (mul_comm n p), (mul_comm m p); now apply mul_le_mono_nonpos_l. Qed. Theorem mul_cancel_l : forall n m p, p ~= 0 -> (p * n == p * m <-> n == m). Proof. intros n m p Hp; split; intro H; [|now f_equiv]. apply lt_gt_cases in Hp; destruct Hp as [Hp|Hp]; destruct (lt_trichotomy n m) as [LT|[EQ|GT]]; trivial. apply (mul_lt_mono_neg_l p) in LT; order. apply (mul_lt_mono_neg_l p) in GT; order. apply (mul_lt_mono_pos_l p) in LT; order. apply (mul_lt_mono_pos_l p) in GT; order. Qed. Theorem mul_cancel_r : forall n m p, p ~= 0 -> (n * p == m * p <-> n == m). Proof. intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_cancel_l. Qed. Theorem mul_id_l : forall n m, m ~= 0 -> (n * m == m <-> n == 1). Proof. intros n m H. stepl (n * m == 1 * m) by now rewrite mul_1_l. now apply mul_cancel_r. Qed. Theorem mul_id_r : forall n m, n ~= 0 -> (n * m == n <-> m == 1). Proof. intros n m; rewrite mul_comm; apply mul_id_l. Qed. Theorem mul_le_mono_pos_l : forall n m p, 0 < p -> (n <= m <-> p * n <= p * m). Proof. intros n m p H; do 2 rewrite lt_eq_cases. rewrite (mul_lt_mono_pos_l p n m) by assumption. now rewrite -> (mul_cancel_l n m p) by (intro H1; rewrite H1 in H; false_hyp H lt_irrefl). Qed. Theorem mul_le_mono_pos_r : forall n m p, 0 < p -> (n <= m <-> n * p <= m * p). Proof. intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_le_mono_pos_l. Qed. Theorem mul_le_mono_neg_l : forall n m p, p < 0 -> (n <= m <-> p * m <= p * n). Proof. intros n m p H; do 2 rewrite lt_eq_cases. rewrite (mul_lt_mono_neg_l p n m); [| assumption]. rewrite -> (mul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H lt_irrefl). now setoid_replace (n == m) with (m == n) by (split; now intro). Qed. Theorem mul_le_mono_neg_r : forall n m p, p < 0 -> (n <= m <-> m * p <= n * p). Proof. intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_le_mono_neg_l. Qed. Theorem mul_lt_mono_nonneg : forall n m p q, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q. Proof. intros n m p q H1 H2 H3 H4. apply le_lt_trans with (m * p). apply mul_le_mono_nonneg_r; [assumption | now apply lt_le_incl]. apply -> mul_lt_mono_pos_l; [assumption | now apply le_lt_trans with n]. Qed. (* There are still many variants of the theorem above. One can assume 0 < n or 0 < p or n <= m or p <= q. *) Theorem mul_le_mono_nonneg : forall n m p q, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q. Proof. intros n m p q H1 H2 H3 H4. le_elim H2; le_elim H4. apply lt_le_incl; now apply mul_lt_mono_nonneg. rewrite <- H4; apply mul_le_mono_nonneg_r; [assumption | now apply lt_le_incl]. rewrite <- H2; apply mul_le_mono_nonneg_l; [assumption | now apply lt_le_incl]. rewrite H2; rewrite H4; now apply eq_le_incl. Qed. Theorem mul_pos_pos : forall n m, 0 < n -> 0 < m -> 0 < n * m. Proof. intros n m H1 H2. rewrite <- (mul_0_l m). now apply mul_lt_mono_pos_r. Qed. Theorem mul_neg_neg : forall n m, n < 0 -> m < 0 -> 0 < n * m. Proof. intros n m H1 H2. rewrite <- (mul_0_l m). now apply mul_lt_mono_neg_r. Qed. Theorem mul_pos_neg : forall n m, 0 < n -> m < 0 -> n * m < 0. Proof. intros n m H1 H2. rewrite <- (mul_0_l m). now apply mul_lt_mono_neg_r. Qed. Theorem mul_neg_pos : forall n m, n < 0 -> 0 < m -> n * m < 0. Proof. intros; rewrite mul_comm; now apply mul_pos_neg. Qed. Theorem mul_nonneg_nonneg : forall n m, 0 <= n -> 0 <= m -> 0 <= n*m. Proof. intros. rewrite <- (mul_0_l m). apply mul_le_mono_nonneg; order. Qed. Theorem mul_pos_cancel_l : forall n m, 0 < n -> (0 < n*m <-> 0 < m). Proof. intros n m Hn. rewrite <- (mul_0_r n) at 1. symmetry. now apply mul_lt_mono_pos_l. Qed. Theorem mul_pos_cancel_r : forall n m, 0 < m -> (0 < n*m <-> 0 < n). Proof. intros n m Hn. rewrite <- (mul_0_l m) at 1. symmetry. now apply mul_lt_mono_pos_r. Qed. Theorem mul_nonneg_cancel_l : forall n m, 0 < n -> (0 <= n*m <-> 0 <= m). Proof. intros n m Hn. rewrite <- (mul_0_r n) at 1. symmetry. now apply mul_le_mono_pos_l. Qed. Theorem mul_nonneg_cancel_r : forall n m, 0 < m -> (0 <= n*m <-> 0 <= n). Proof. intros n m Hn. rewrite <- (mul_0_l m) at 1. symmetry. now apply mul_le_mono_pos_r. Qed. Theorem lt_1_mul_pos : forall n m, 1 < n -> 0 < m -> 1 < n * m. Proof. intros n m H1 H2. apply (mul_lt_mono_pos_r m) in H1. rewrite mul_1_l in H1. now apply lt_1_l with m. assumption. Qed. Theorem eq_mul_0 : forall n m, n * m == 0 <-> n == 0 \/ m == 0. Proof. intros n m; split. intro H; destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]]; destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]]; try (now right); try (now left). exfalso; now apply (lt_neq 0 (n * m)); [apply mul_neg_neg |]. exfalso; now apply (lt_neq (n * m) 0); [apply mul_neg_pos |]. exfalso; now apply (lt_neq (n * m) 0); [apply mul_pos_neg |]. exfalso; now apply (lt_neq 0 (n * m)); [apply mul_pos_pos |]. intros [H | H]. now rewrite H, mul_0_l. now rewrite H, mul_0_r. Qed. Theorem neq_mul_0 : forall n m, n ~= 0 /\ m ~= 0 <-> n * m ~= 0. Proof. intros n m; split; intro H. intro H1; apply eq_mul_0 in H1. tauto. split; intro H1; rewrite H1 in H; (rewrite mul_0_l in H || rewrite mul_0_r in H); now apply H. Qed. Theorem eq_square_0 : forall n, n * n == 0 <-> n == 0. Proof. intro n; rewrite eq_mul_0; tauto. Qed. Theorem eq_mul_0_l : forall n m, n * m == 0 -> m ~= 0 -> n == 0. Proof. intros n m H1 H2. apply eq_mul_0 in H1. destruct H1 as [H1 | H1]. assumption. false_hyp H1 H2. Qed. Theorem eq_mul_0_r : forall n m, n * m == 0 -> n ~= 0 -> m == 0. Proof. intros n m H1 H2; apply eq_mul_0 in H1. destruct H1 as [H1 | H1]. false_hyp H1 H2. assumption. Qed. (** Some alternative names: *) Definition mul_eq_0 := eq_mul_0. Definition mul_eq_0_l := eq_mul_0_l. Definition mul_eq_0_r := eq_mul_0_r. Theorem lt_0_mul n m : 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0). Proof. split; [intro H | intros [[H1 H2] | [H1 H2]]]. destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]]; [| rewrite H1 in H; rewrite mul_0_l in H; false_hyp H lt_irrefl |]; (destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]]; [| rewrite H2 in H; rewrite mul_0_r in H; false_hyp H lt_irrefl |]); try (left; now split); try (right; now split). assert (H3 : n * m < 0) by now apply mul_neg_pos. exfalso; now apply (lt_asymm (n * m) 0). assert (H3 : n * m < 0) by now apply mul_pos_neg. exfalso; now apply (lt_asymm (n * m) 0). now apply mul_pos_pos. now apply mul_neg_neg. Qed. Theorem square_lt_mono_nonneg : forall n m, 0 <= n -> n < m -> n * n < m * m. Proof. intros n m H1 H2. now apply mul_lt_mono_nonneg. Qed. Theorem square_le_mono_nonneg : forall n m, 0 <= n -> n <= m -> n * n <= m * m. Proof. intros n m H1 H2. now apply mul_le_mono_nonneg. Qed. (* The converse theorems require nonnegativity (or nonpositivity) of the other variable *) Theorem square_lt_simpl_nonneg : forall n m, 0 <= m -> n * n < m * m -> n < m. Proof. intros n m H1 H2. destruct (lt_ge_cases n 0). now apply lt_le_trans with 0. destruct (lt_ge_cases n m) as [LT|LE]; trivial. apply square_le_mono_nonneg in LE; order. Qed. Theorem square_le_simpl_nonneg : forall n m, 0 <= m -> n * n <= m * m -> n <= m. Proof. intros n m H1 H2. destruct (lt_ge_cases n 0). apply lt_le_incl; now apply lt_le_trans with 0. destruct (le_gt_cases n m) as [LE|LT]; trivial. apply square_lt_mono_nonneg in LT; order. Qed. Theorem mul_2_mono_l : forall n m, n < m -> 1 + 2 * n < 2 * m. Proof. intros n m. rewrite <- le_succ_l, (mul_le_mono_pos_l (S n) m two). rewrite two_succ. nzsimpl. now rewrite le_succ_l. order'. Qed. Lemma add_le_mul : forall a b, 1 1 a+b <= a*b. Proof. assert (AUX : forall a b, 0 0 (S a)+(S b) <= (S a)*(S b)). intros a b Ha Hb. nzsimpl. rewrite <- succ_le_mono. apply le_succ_l. rewrite <- add_assoc, <- (add_0_l (a+b)), (add_comm b). apply add_lt_mono_r. now apply mul_pos_pos. intros a b Ha Hb. assert (Ha' := lt_succ_pred 1 a Ha). assert (Hb' := lt_succ_pred 1 b Hb). rewrite <- Ha', <- Hb'. apply AUX; rewrite succ_lt_mono, <- one_succ; order. Qed. (** A few results about squares *) Lemma square_nonneg : forall a, 0 <= a * a. Proof. intros. rewrite <- (mul_0_r a). destruct (le_gt_cases a 0). now apply mul_le_mono_nonpos_l. apply mul_le_mono_nonneg_l; order. Qed. Lemma crossmul_le_addsquare : forall a b, 0<=a -> 0<=b -> b*a+a*b <= a*a+b*b. Proof. assert (AUX : forall a b, 0<=a<=b -> b*a+a*b <= a*a+b*b). intros a b (Ha,H). destruct (le_exists_sub _ _ H) as (d & EQ & Hd). rewrite EQ. rewrite 2 mul_add_distr_r. rewrite !add_assoc. apply add_le_mono_r. rewrite add_comm. apply add_le_mono_l. apply mul_le_mono_nonneg_l; trivial. order. intros a b Ha Hb. destruct (le_gt_cases a b). apply AUX; split; order. rewrite (add_comm (b*a)), (add_comm (a*a)). apply AUX; split; order. Qed. Lemma add_square_le : forall a b, 0<=a -> 0<=b -> a*a + b*b <= (a+b)*(a+b). Proof. intros a b Ha Hb. rewrite mul_add_distr_r, !mul_add_distr_l. rewrite add_assoc. apply add_le_mono_r. rewrite <- add_assoc. rewrite <- (add_0_r (a*a)) at 1. apply add_le_mono_l. apply add_nonneg_nonneg; now apply mul_nonneg_nonneg. Qed. Lemma square_add_le : forall a b, 0<=a -> 0<=b -> (a+b)*(a+b) <= 2*(a*a + b*b). Proof. intros a b Ha Hb. rewrite !mul_add_distr_l, !mul_add_distr_r. nzsimpl'. rewrite <- !add_assoc. apply add_le_mono_l. rewrite !add_assoc. apply add_le_mono_r. apply crossmul_le_addsquare; order. Qed. Lemma quadmul_le_squareadd : forall a b, 0<=a -> 0<=b -> 2*2*a*b <= (a+b)*(a+b). Proof. intros. nzsimpl'. rewrite !mul_add_distr_l, !mul_add_distr_r. rewrite (add_comm _ (b*b)), add_assoc. apply add_le_mono_r. rewrite (add_shuffle0 (a*a)), (mul_comm b a). apply add_le_mono_r. rewrite (mul_comm a b) at 1. now apply crossmul_le_addsquare. Qed. End NZMulOrderProp.