(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (p * n < p * m <-> q * n + m < q * m + n). Proof. intros p q n m H. rewrite <- H. nzsimpl. rewrite <- ! add_assoc, (add_comm n m). now rewrite <- add_lt_mono_r. Qed. Theorem mul_lt_mono_pos_l : forall p n m, 0 < p -> (n < m <-> p * n < p * m). Proof. nzord_induct p. intros n m H; false_hyp H lt_irrefl. intros p H IH n m H1. nzsimpl. le_elim H. assert (LR : forall n m, n < m -> p * n + n < p * m + m). intros n1 m1 H2. apply add_lt_mono; [now apply -> IH | assumption]. split; [apply LR |]. intro H2. apply -> lt_dne; intro H3. apply <- le_ngt in H3. le_elim H3. apply lt_asymm in H2. apply H2. now apply LR. rewrite H3 in H2; false_hyp H2 lt_irrefl. rewrite <- H; now nzsimpl. intros p H1 _ n m H2. destruct (lt_asymm _ _ H1 H2). Qed. Theorem mul_lt_mono_pos_r : forall p n m, 0 < p -> (n < m <-> n * p < m * p). Proof. intros p n m. rewrite (mul_comm n p), (mul_comm m p). now apply mul_lt_mono_pos_l. Qed. Theorem mul_lt_mono_neg_l : forall p n m, p < 0 -> (n < m <-> p * m < p * n). Proof. nzord_induct p. intros n m H; false_hyp H lt_irrefl. intros p H1 _ n m H2. apply lt_succ_l in H2. apply <- nle_gt in H2. false_hyp H1 H2. intros p H IH n m H1. apply <- le_succ_l in H. le_elim H. assert (LR : forall n m, n < m -> p * m < p * n). intros n1 m1 H2. apply (le_lt_add_lt n1 m1). now apply lt_le_incl. rewrite <- 2 mul_succ_l. now apply -> IH. split; [apply LR |]. intro H2. apply -> lt_dne; intro H3. apply <- le_ngt in H3. le_elim H3. apply lt_asymm in H2. apply H2. now apply LR. rewrite H3 in H2; false_hyp H2 lt_irrefl. rewrite (mul_lt_pred p (S p)) by reflexivity. rewrite H; do 2 rewrite mul_0_l; now do 2 rewrite add_0_l. Qed. Theorem mul_lt_mono_neg_r : forall p n m, p < 0 -> (n < m <-> m * p < n * p). Proof. intros p n m. rewrite (mul_comm n p), (mul_comm m p). now apply mul_lt_mono_neg_l. Qed. Theorem mul_le_mono_nonneg_l : forall n m p, 0 <= p -> n <= m -> p * n <= p * m. Proof. intros n m p H1 H2. le_elim H1. le_elim H2. apply lt_le_incl. now apply -> mul_lt_mono_pos_l. apply eq_le_incl; now rewrite H2. apply eq_le_incl; rewrite <- H1; now do 2 rewrite mul_0_l. Qed. Theorem mul_le_mono_nonpos_l : forall n m p, p <= 0 -> n <= m -> p * m <= p * n. Proof. intros n m p H1 H2. le_elim H1. le_elim H2. apply lt_le_incl. now apply -> mul_lt_mono_neg_l. apply eq_le_incl; now rewrite H2. apply eq_le_incl; rewrite H1; now do 2 rewrite mul_0_l. Qed. Theorem mul_le_mono_nonneg_r : forall n m p, 0 <= p -> n <= m -> n * p <= m * p. Proof. intros n m p H1 H2; rewrite (mul_comm n p), (mul_comm m p); now apply mul_le_mono_nonneg_l. Qed. Theorem mul_le_mono_nonpos_r : forall n m p, p <= 0 -> n <= m -> m * p <= n * p. Proof. intros n m p H1 H2; rewrite (mul_comm n p), (mul_comm m p); now apply mul_le_mono_nonpos_l. Qed. Theorem mul_cancel_l : forall n m p, p ~= 0 -> (p * n == p * m <-> n == m). Proof. intros n m p H; split; intro H1. destruct (lt_trichotomy p 0) as [H2 | [H2 | H2]]. apply -> eq_dne; intro H3. apply -> lt_gt_cases in H3. destruct H3 as [H3 | H3]. assert (H4 : p * m < p * n); [now apply -> mul_lt_mono_neg_l |]. rewrite H1 in H4; false_hyp H4 lt_irrefl. assert (H4 : p * n < p * m); [now apply -> mul_lt_mono_neg_l |]. rewrite H1 in H4; false_hyp H4 lt_irrefl. false_hyp H2 H. apply -> eq_dne; intro H3. apply -> lt_gt_cases in H3. destruct H3 as [H3 | H3]. assert (H4 : p * n < p * m) by (now apply -> mul_lt_mono_pos_l). rewrite H1 in H4; false_hyp H4 lt_irrefl. assert (H4 : p * m < p * n) by (now apply -> mul_lt_mono_pos_l). rewrite H1 in H4; false_hyp H4 lt_irrefl. now rewrite H1. Qed. Theorem mul_cancel_r : forall n m p, p ~= 0 -> (n * p == m * p <-> n == m). Proof. intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_cancel_l. Qed. Theorem mul_id_l : forall n m, m ~= 0 -> (n * m == m <-> n == 1). Proof. intros n m H. stepl (n * m == 1 * m) by now rewrite mul_1_l. now apply mul_cancel_r. Qed. Theorem mul_id_r : forall n m, n ~= 0 -> (n * m == n <-> m == 1). Proof. intros n m; rewrite mul_comm; apply mul_id_l. Qed. Theorem mul_le_mono_pos_l : forall n m p, 0 < p -> (n <= m <-> p * n <= p * m). Proof. intros n m p H; do 2 rewrite lt_eq_cases. rewrite (mul_lt_mono_pos_l p n m) by assumption. now rewrite -> (mul_cancel_l n m p) by (intro H1; rewrite H1 in H; false_hyp H lt_irrefl). Qed. Theorem mul_le_mono_pos_r : forall n m p, 0 < p -> (n <= m <-> n * p <= m * p). Proof. intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_le_mono_pos_l. Qed. Theorem mul_le_mono_neg_l : forall n m p, p < 0 -> (n <= m <-> p * m <= p * n). Proof. intros n m p H; do 2 rewrite lt_eq_cases. rewrite (mul_lt_mono_neg_l p n m); [| assumption]. rewrite -> (mul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H lt_irrefl). now setoid_replace (n == m) with (m == n) by (split; now intro). Qed. Theorem mul_le_mono_neg_r : forall n m p, p < 0 -> (n <= m <-> m * p <= n * p). Proof. intros n m p. rewrite (mul_comm n p), (mul_comm m p); apply mul_le_mono_neg_l. Qed. Theorem mul_lt_mono_nonneg : forall n m p q, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q. Proof. intros n m p q H1 H2 H3 H4. apply le_lt_trans with (m * p). apply mul_le_mono_nonneg_r; [assumption | now apply lt_le_incl]. apply -> mul_lt_mono_pos_l; [assumption | now apply le_lt_trans with n]. Qed. (* There are still many variants of the theorem above. One can assume 0 < n or 0 < p or n <= m or p <= q. *) Theorem mul_le_mono_nonneg : forall n m p q, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q. Proof. intros n m p q H1 H2 H3 H4. le_elim H2; le_elim H4. apply lt_le_incl; now apply mul_lt_mono_nonneg. rewrite <- H4; apply mul_le_mono_nonneg_r; [assumption | now apply lt_le_incl]. rewrite <- H2; apply mul_le_mono_nonneg_l; [assumption | now apply lt_le_incl]. rewrite H2; rewrite H4; now apply eq_le_incl. Qed. Theorem mul_pos_pos : forall n m, 0 < n -> 0 < m -> 0 < n * m. Proof. intros n m H1 H2. rewrite <- (mul_0_l m). now apply -> mul_lt_mono_pos_r. Qed. Theorem mul_neg_neg : forall n m, n < 0 -> m < 0 -> 0 < n * m. Proof. intros n m H1 H2. rewrite <- (mul_0_l m). now apply -> mul_lt_mono_neg_r. Qed. Theorem mul_pos_neg : forall n m, 0 < n -> m < 0 -> n * m < 0. Proof. intros n m H1 H2. rewrite <- (mul_0_l m). now apply -> mul_lt_mono_neg_r. Qed. Theorem mul_neg_pos : forall n m, n < 0 -> 0 < m -> n * m < 0. Proof. intros; rewrite mul_comm; now apply mul_pos_neg. Qed. Theorem mul_nonneg_nonneg : forall n m, 0 <= n -> 0 <= m -> 0 <= n*m. Proof. intros. rewrite <- (mul_0_l m). apply mul_le_mono_nonneg; order. Qed. Theorem lt_1_mul_pos : forall n m, 1 < n -> 0 < m -> 1 < n * m. Proof. intros n m H1 H2. apply -> (mul_lt_mono_pos_r m) in H1. rewrite mul_1_l in H1. now apply lt_1_l with m. assumption. Qed. Theorem eq_mul_0 : forall n m, n * m == 0 <-> n == 0 \/ m == 0. Proof. intros n m; split. intro H; destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]]; destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]]; try (now right); try (now left). exfalso; now apply (lt_neq 0 (n * m)); [apply mul_neg_neg |]. exfalso; now apply (lt_neq (n * m) 0); [apply mul_neg_pos |]. exfalso; now apply (lt_neq (n * m) 0); [apply mul_pos_neg |]. exfalso; now apply (lt_neq 0 (n * m)); [apply mul_pos_pos |]. intros [H | H]. now rewrite H, mul_0_l. now rewrite H, mul_0_r. Qed. Theorem neq_mul_0 : forall n m, n ~= 0 /\ m ~= 0 <-> n * m ~= 0. Proof. intros n m; split; intro H. intro H1; apply -> eq_mul_0 in H1. tauto. split; intro H1; rewrite H1 in H; (rewrite mul_0_l in H || rewrite mul_0_r in H); now apply H. Qed. Theorem eq_square_0 : forall n, n * n == 0 <-> n == 0. Proof. intro n; rewrite eq_mul_0; tauto. Qed. Theorem eq_mul_0_l : forall n m, n * m == 0 -> m ~= 0 -> n == 0. Proof. intros n m H1 H2. apply -> eq_mul_0 in H1. destruct H1 as [H1 | H1]. assumption. false_hyp H1 H2. Qed. Theorem eq_mul_0_r : forall n m, n * m == 0 -> n ~= 0 -> m == 0. Proof. intros n m H1 H2; apply -> eq_mul_0 in H1. destruct H1 as [H1 | H1]. false_hyp H1 H2. assumption. Qed. Theorem lt_0_mul : forall n m, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0). Proof. intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]]. destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]]; [| rewrite H1 in H; rewrite mul_0_l in H; false_hyp H lt_irrefl |]; (destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]]; [| rewrite H2 in H; rewrite mul_0_r in H; false_hyp H lt_irrefl |]); try (left; now split); try (right; now split). assert (H3 : n * m < 0) by now apply mul_neg_pos. exfalso; now apply (lt_asymm (n * m) 0). assert (H3 : n * m < 0) by now apply mul_pos_neg. exfalso; now apply (lt_asymm (n * m) 0). now apply mul_pos_pos. now apply mul_neg_neg. Qed. Theorem square_lt_mono_nonneg : forall n m, 0 <= n -> n < m -> n * n < m * m. Proof. intros n m H1 H2. now apply mul_lt_mono_nonneg. Qed. Theorem square_le_mono_nonneg : forall n m, 0 <= n -> n <= m -> n * n <= m * m. Proof. intros n m H1 H2. now apply mul_le_mono_nonneg. Qed. (* The converse theorems require nonnegativity (or nonpositivity) of the other variable *) Theorem square_lt_simpl_nonneg : forall n m, 0 <= m -> n * n < m * m -> n < m. Proof. intros n m H1 H2. destruct (lt_ge_cases n 0). now apply lt_le_trans with 0. destruct (lt_ge_cases n m). assumption. assert (F : m * m <= n * n) by now apply square_le_mono_nonneg. apply -> le_ngt in F. false_hyp H2 F. Qed. Theorem square_le_simpl_nonneg : forall n m, 0 <= m -> n * n <= m * m -> n <= m. Proof. intros n m H1 H2. destruct (lt_ge_cases n 0). apply lt_le_incl; now apply lt_le_trans with 0. destruct (le_gt_cases n m). assumption. assert (F : m * m < n * n) by now apply square_lt_mono_nonneg. apply -> lt_nge in F. false_hyp H2 F. Qed. Theorem mul_2_mono_l : forall n m, n < m -> 1 + (1 + 1) * n < (1 + 1) * m. Proof. intros n m. rewrite <- le_succ_l, (mul_le_mono_pos_l (S n) m (1 + 1)). rewrite !mul_add_distr_r; nzsimpl; now rewrite le_succ_l. apply add_pos_pos; now apply lt_0_1. Qed. End NZMulOrderPropSig.