(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* p + n < p + m. Proof. intros n m p; NZinduct p. now do 2 rewrite NZadd_0_l. intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_lt_mono. Qed. Theorem NZadd_lt_mono_r : forall n m p : NZ, n < m <-> n + p < m + p. Proof. intros n m p. rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_lt_mono_l. Qed. Theorem NZadd_lt_mono : forall n m p q : NZ, n < m -> p < q -> n + p < m + q. Proof. intros n m p q H1 H2. apply NZlt_trans with (m + p); [now apply -> NZadd_lt_mono_r | now apply -> NZadd_lt_mono_l]. Qed. Theorem NZadd_le_mono_l : forall n m p : NZ, n <= m <-> p + n <= p + m. Proof. intros n m p; NZinduct p. now do 2 rewrite NZadd_0_l. intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_le_mono. Qed. Theorem NZadd_le_mono_r : forall n m p : NZ, n <= m <-> n + p <= m + p. Proof. intros n m p. rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_le_mono_l. Qed. Theorem NZadd_le_mono : forall n m p q : NZ, n <= m -> p <= q -> n + p <= m + q. Proof. intros n m p q H1 H2. apply NZle_trans with (m + p); [now apply -> NZadd_le_mono_r | now apply -> NZadd_le_mono_l]. Qed. Theorem NZadd_lt_le_mono : forall n m p q : NZ, n < m -> p <= q -> n + p < m + q. Proof. intros n m p q H1 H2. apply NZlt_le_trans with (m + p); [now apply -> NZadd_lt_mono_r | now apply -> NZadd_le_mono_l]. Qed. Theorem NZadd_le_lt_mono : forall n m p q : NZ, n <= m -> p < q -> n + p < m + q. Proof. intros n m p q H1 H2. apply NZle_lt_trans with (m + p); [now apply -> NZadd_le_mono_r | now apply -> NZadd_lt_mono_l]. Qed. Theorem NZadd_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_mono. Qed. Theorem NZadd_pos_nonneg : forall n m : NZ, 0 < n -> 0 <= m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_le_mono. Qed. Theorem NZadd_nonneg_pos : forall n m : NZ, 0 <= n -> 0 < m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_lt_mono. Qed. Theorem NZadd_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n + m. Proof. intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_mono. Qed. Theorem NZlt_add_pos_l : forall n m : NZ, 0 < n -> m < n + m. Proof. intros n m H. apply -> (NZadd_lt_mono_r 0 n m) in H. now rewrite NZadd_0_l in H. Qed. Theorem NZlt_add_pos_r : forall n m : NZ, 0 < n -> m < m + n. Proof. intros; rewrite NZadd_comm; now apply NZlt_add_pos_l. Qed. Theorem NZle_lt_add_lt : forall n m p q : NZ, n <= m -> p + m < q + n -> p < q. Proof. intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption]. pose proof (NZadd_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H2. false_hyp H3 H2. Qed. Theorem NZlt_le_add_lt : forall n m p q : NZ, n < m -> p + m <= q + n -> p < q. Proof. intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption]. pose proof (NZadd_le_lt_mono q p n m H H1) as H3. apply <- NZnle_gt in H3. false_hyp H2 H3. Qed. Theorem NZle_le_add_le : forall n m p q : NZ, n <= m -> p + m <= q + n -> p <= q. Proof. intros n m p q H1 H2. destruct (NZle_gt_cases p q); [assumption |]. pose proof (NZadd_lt_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H3. false_hyp H2 H3. Qed. Theorem NZadd_lt_cases : forall n m p q : NZ, n + m < p + q -> n < p \/ m < q. Proof. intros n m p q H; destruct (NZle_gt_cases p n) as [H1 | H1]. destruct (NZle_gt_cases q m) as [H2 | H2]. pose proof (NZadd_le_mono p n q m H1 H2) as H3. apply -> NZle_ngt in H3. false_hyp H H3. now right. now left. Qed. Theorem NZadd_le_cases : forall n m p q : NZ, n + m <= p + q -> n <= p \/ m <= q. Proof. intros n m p q H. destruct (NZle_gt_cases n p) as [H1 | H1]. now left. destruct (NZle_gt_cases m q) as [H2 | H2]. now right. assert (H3 : p + q < n + m) by now apply NZadd_lt_mono. apply -> NZle_ngt in H. false_hyp H3 H. Qed. Theorem NZadd_neg_cases : forall n m : NZ, n + m < 0 -> n < 0 \/ m < 0. Proof. intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l. Qed. Theorem NZadd_pos_cases : forall n m : NZ, 0 < n + m -> 0 < n \/ 0 < m. Proof. intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l. Qed. Theorem NZadd_nonpos_cases : forall n m : NZ, n + m <= 0 -> n <= 0 \/ m <= 0. Proof. intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l. Qed. Theorem NZadd_nonneg_cases : forall n m : NZ, 0 <= n + m -> 0 <= n \/ 0 <= m. Proof. intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l. Qed. End NZAddOrderPropFunct.