(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* p + n < p + m. Proof. intros n m p; nzinduct p. now nzsimpl. intro p. nzsimpl. now rewrite <- succ_lt_mono. Qed. Theorem add_lt_mono_r : forall n m p, n < m <-> n + p < m + p. Proof. intros n m p. rewrite (add_comm n p), (add_comm m p); apply add_lt_mono_l. Qed. Theorem add_lt_mono : forall n m p q, n < m -> p < q -> n + p < m + q. Proof. intros n m p q H1 H2. apply lt_trans with (m + p); [now apply add_lt_mono_r | now apply add_lt_mono_l]. Qed. Theorem add_le_mono_l : forall n m p, n <= m <-> p + n <= p + m. Proof. intros n m p; nzinduct p. now nzsimpl. intro p. nzsimpl. now rewrite <- succ_le_mono. Qed. Theorem add_le_mono_r : forall n m p, n <= m <-> n + p <= m + p. Proof. intros n m p. rewrite (add_comm n p), (add_comm m p); apply add_le_mono_l. Qed. Theorem add_le_mono : forall n m p q, n <= m -> p <= q -> n + p <= m + q. Proof. intros n m p q H1 H2. apply le_trans with (m + p); [now apply add_le_mono_r | now apply add_le_mono_l]. Qed. Theorem add_lt_le_mono : forall n m p q, n < m -> p <= q -> n + p < m + q. Proof. intros n m p q H1 H2. apply lt_le_trans with (m + p); [now apply add_lt_mono_r | now apply add_le_mono_l]. Qed. Theorem add_le_lt_mono : forall n m p q, n <= m -> p < q -> n + p < m + q. Proof. intros n m p q H1 H2. apply le_lt_trans with (m + p); [now apply add_le_mono_r | now apply add_lt_mono_l]. Qed. Theorem add_pos_pos : forall n m, 0 < n -> 0 < m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_lt_mono. Qed. Theorem add_pos_nonneg : forall n m, 0 < n -> 0 <= m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_lt_le_mono. Qed. Theorem add_nonneg_pos : forall n m, 0 <= n -> 0 < m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_le_lt_mono. Qed. Theorem add_nonneg_nonneg : forall n m, 0 <= n -> 0 <= m -> 0 <= n + m. Proof. intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_le_mono. Qed. Theorem lt_add_pos_l : forall n m, 0 < n -> m < n + m. Proof. intros n m. rewrite (add_lt_mono_r 0 n m). now nzsimpl. Qed. Theorem lt_add_pos_r : forall n m, 0 < n -> m < m + n. Proof. intros; rewrite add_comm; now apply lt_add_pos_l. Qed. Theorem le_lt_add_lt : forall n m p q, n <= m -> p + m < q + n -> p < q. Proof. intros n m p q H1 H2. destruct (le_gt_cases q p); [| assumption]. contradict H2. rewrite nlt_ge. now apply add_le_mono. Qed. Theorem lt_le_add_lt : forall n m p q, n < m -> p + m <= q + n -> p < q. Proof. intros n m p q H1 H2. destruct (le_gt_cases q p); [| assumption]. contradict H2. rewrite nle_gt. now apply add_le_lt_mono. Qed. Theorem le_le_add_le : forall n m p q, n <= m -> p + m <= q + n -> p <= q. Proof. intros n m p q H1 H2. destruct (le_gt_cases p q); [assumption |]. contradict H2. rewrite nle_gt. now apply add_lt_le_mono. Qed. Theorem add_lt_cases : forall n m p q, n + m < p + q -> n < p \/ m < q. Proof. intros n m p q H; destruct (le_gt_cases p n) as [H1 | H1]; [| now left]. destruct (le_gt_cases q m) as [H2 | H2]; [| now right]. contradict H; rewrite nlt_ge. now apply add_le_mono. Qed. Theorem add_le_cases : forall n m p q, n + m <= p + q -> n <= p \/ m <= q. Proof. intros n m p q H. destruct (le_gt_cases n p) as [H1 | H1]. now left. destruct (le_gt_cases m q) as [H2 | H2]. now right. contradict H; rewrite nle_gt. now apply add_lt_mono. Qed. Theorem add_neg_cases : forall n m, n + m < 0 -> n < 0 \/ m < 0. Proof. intros n m H; apply add_lt_cases; now nzsimpl. Qed. Theorem add_pos_cases : forall n m, 0 < n + m -> 0 < n \/ 0 < m. Proof. intros n m H; apply add_lt_cases; now nzsimpl. Qed. Theorem add_nonpos_cases : forall n m, n + m <= 0 -> n <= 0 \/ m <= 0. Proof. intros n m H; apply add_le_cases; now nzsimpl. Qed. Theorem add_nonneg_cases : forall n m, 0 <= n + m -> 0 <= n \/ 0 <= m. Proof. intros n m H; apply add_le_cases; now nzsimpl. Qed. (** Substraction *) (** We can prove the existence of a subtraction of any number by a smaller one *) Lemma le_exists_sub : forall n m, n<=m -> exists p, m == p+n /\ 0<=p. Proof. intros n m H. apply le_ind with (4:=H). solve_proper. exists 0; nzsimpl; split; order. clear m H. intros m H (p & EQ & LE). exists (S p). split. nzsimpl. now f_equiv. now apply le_le_succ_r. Qed. (** For the moment, it doesn't seem possible to relate this existing subtraction with [sub]. *) End NZAddOrderProp.