(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* eq) succ. Program Instance pred_wd : Proper (eq ==> eq) pred. Program Instance add_wd : Proper (eq ==> eq ==> eq) add. Program Instance sub_wd : Proper (eq ==> eq ==> eq) sub. Program Instance mul_wd : Proper (eq ==> eq ==> eq) mul. Theorem pred_succ : forall n, pred (succ n) == n. Proof. intros. zify. auto with zarith. Qed. Theorem one_succ : 1 == succ 0. Proof. now zify. Qed. Theorem two_succ : 2 == succ 1. Proof. now zify. Qed. Section Induction. Variable A : ZZ.t -> Prop. Hypothesis A_wd : Proper (eq==>iff) A. Hypothesis A0 : A 0. Hypothesis AS : forall n, A n <-> A (succ n). Let B (z : Z) := A (of_Z z). Lemma B0 : B 0. Proof. unfold B; simpl. rewrite <- (A_wd 0); auto. zify. auto. Qed. Lemma BS : forall z : Z, B z -> B (z + 1). Proof. intros z H. unfold B in *. apply -> AS in H. setoid_replace (of_Z (z + 1)) with (succ (of_Z z)); auto. zify. auto. Qed. Lemma BP : forall z : Z, B z -> B (z - 1). Proof. intros z H. unfold B in *. rewrite AS. setoid_replace (succ (of_Z (z - 1))) with (of_Z z); auto. zify. auto with zarith. Qed. Lemma B_holds : forall z : Z, B z. Proof. intros; destruct (Z_lt_le_dec 0 z). apply natlike_ind; auto with zarith. apply B0. intros; apply BS; auto. replace z with (-(-z))%Z in * by (auto with zarith). remember (-z)%Z as z'. pattern z'; apply natlike_ind. apply B0. intros; rewrite Z.opp_succ; unfold Z.pred; apply BP; auto. subst z'; auto with zarith. Qed. Theorem bi_induction : forall n, A n. Proof. intro n. setoid_replace n with (of_Z (to_Z n)). apply B_holds. zify. auto. Qed. End Induction. Theorem add_0_l : forall n, 0 + n == n. Proof. intros. zify. auto with zarith. Qed. Theorem add_succ_l : forall n m, (succ n) + m == succ (n + m). Proof. intros. zify. auto with zarith. Qed. Theorem sub_0_r : forall n, n - 0 == n. Proof. intros. zify. auto with zarith. Qed. Theorem sub_succ_r : forall n m, n - (succ m) == pred (n - m). Proof. intros. zify. auto with zarith. Qed. Theorem mul_0_l : forall n, 0 * n == 0. Proof. intros. zify. auto with zarith. Qed. Theorem mul_succ_l : forall n m, (succ n) * m == n * m + m. Proof. intros. zify. ring. Qed. (** Order *) Lemma eqb_eq x y : eqb x y = true <-> x == y. Proof. zify. apply Z.eqb_eq. Qed. Lemma leb_le x y : leb x y = true <-> x <= y. Proof. zify. apply Z.leb_le. Qed. Lemma ltb_lt x y : ltb x y = true <-> x < y. Proof. zify. apply Z.ltb_lt. Qed. Lemma compare_eq_iff n m : compare n m = Eq <-> n == m. Proof. intros. zify. apply Z.compare_eq_iff. Qed. Lemma compare_lt_iff n m : compare n m = Lt <-> n < m. Proof. intros. zify. reflexivity. Qed. Lemma compare_le_iff n m : compare n m <> Gt <-> n <= m. Proof. intros. zify. reflexivity. Qed. Lemma compare_antisym n m : compare m n = CompOpp (compare n m). Proof. intros. zify. apply Z.compare_antisym. Qed. Include BoolOrderFacts ZZ ZZ ZZ [no inline]. Instance compare_wd : Proper (eq ==> eq ==> Logic.eq) compare. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance eqb_wd : Proper (eq ==> eq ==> Logic.eq) eqb. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance ltb_wd : Proper (eq ==> eq ==> Logic.eq) ltb. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance leb_wd : Proper (eq ==> eq ==> Logic.eq) leb. Proof. intros x x' Hx y y' Hy. zify. now rewrite Hx, Hy. Qed. Instance lt_wd : Proper (eq ==> eq ==> iff) lt. Proof. intros x x' Hx y y' Hy; unfold lt; rewrite Hx, Hy; intuition. Qed. Theorem lt_succ_r : forall n m, n < (succ m) <-> n <= m. Proof. intros. zify. omega. Qed. Theorem min_l : forall n m, n <= m -> min n m == n. Proof. intros n m. zify. omega with *. Qed. Theorem min_r : forall n m, m <= n -> min n m == m. Proof. intros n m. zify. omega with *. Qed. Theorem max_l : forall n m, m <= n -> max n m == n. Proof. intros n m. zify. omega with *. Qed. Theorem max_r : forall n m, n <= m -> max n m == m. Proof. intros n m. zify. omega with *. Qed. (** Part specific to integers, not natural numbers *) Theorem succ_pred : forall n, succ (pred n) == n. Proof. intros. zify. auto with zarith. Qed. (** Opp *) Program Instance opp_wd : Proper (eq ==> eq) opp. Theorem opp_0 : - 0 == 0. Proof. intros. zify. auto with zarith. Qed. Theorem opp_succ : forall n, - (succ n) == pred (- n). Proof. intros. zify. auto with zarith. Qed. (** Abs / Sgn *) Theorem abs_eq : forall n, 0 <= n -> abs n == n. Proof. intros n. zify. omega with *. Qed. Theorem abs_neq : forall n, n <= 0 -> abs n == -n. Proof. intros n. zify. omega with *. Qed. Theorem sgn_null : forall n, n==0 -> sgn n == 0. Proof. intros n. zify. omega with *. Qed. Theorem sgn_pos : forall n, 0 sgn n == 1. Proof. intros n. zify. omega with *. Qed. Theorem sgn_neg : forall n, n<0 -> sgn n == opp 1. Proof. intros n. zify. omega with *. Qed. (** Power *) Program Instance pow_wd : Proper (eq==>eq==>eq) pow. Lemma pow_0_r : forall a, a^0 == 1. Proof. intros. now zify. Qed. Lemma pow_succ_r : forall a b, 0<=b -> a^(succ b) == a * a^b. Proof. intros a b. zify. intros. now rewrite Z.add_1_r, Z.pow_succ_r. Qed. Lemma pow_neg_r : forall a b, b<0 -> a^b == 0. Proof. intros a b. zify. intros Hb. destruct [b]; reflexivity || discriminate. Qed. Lemma pow_pow_N : forall a b, 0<=b -> a^b == pow_N a (Z.to_N (to_Z b)). Proof. intros a b. zify. intros Hb. now rewrite spec_pow_N, Z2N.id. Qed. Lemma pow_pos_N : forall a p, pow_pos a p == pow_N a (Npos p). Proof. intros a b. red. now rewrite spec_pow_N, spec_pow_pos. Qed. (** Square *) Lemma square_spec n : square n == n * n. Proof. now zify. Qed. (** Sqrt *) Lemma sqrt_spec : forall n, 0<=n -> (sqrt n)*(sqrt n) <= n /\ n < (succ (sqrt n))*(succ (sqrt n)). Proof. intros n. zify. apply Z.sqrt_spec. Qed. Lemma sqrt_neg : forall n, n<0 -> sqrt n == 0. Proof. intros n. zify. apply Z.sqrt_neg. Qed. (** Log2 *) Lemma log2_spec : forall n, 0 2^(log2 n) <= n /\ n < 2^(succ (log2 n)). Proof. intros n. zify. apply Z.log2_spec. Qed. Lemma log2_nonpos : forall n, n<=0 -> log2 n == 0. Proof. intros n. zify. apply Z.log2_nonpos. Qed. (** Even / Odd *) Definition Even n := exists m, n == 2*m. Definition Odd n := exists m, n == 2*m+1. Lemma even_spec n : even n = true <-> Even n. Proof. unfold Even. zify. rewrite Z.even_spec. split; intros (m,Hm). - exists (of_Z m). now zify. - exists [m]. revert Hm. now zify. Qed. Lemma odd_spec n : odd n = true <-> Odd n. Proof. unfold Odd. zify. rewrite Z.odd_spec. split; intros (m,Hm). - exists (of_Z m). now zify. - exists [m]. revert Hm. now zify. Qed. (** Div / Mod *) Program Instance div_wd : Proper (eq==>eq==>eq) div. Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. Theorem div_mod : forall a b, ~b==0 -> a == b*(div a b) + (modulo a b). Proof. intros a b. zify. intros. apply Z.div_mod; auto. Qed. Theorem mod_pos_bound : forall a b, 0 < b -> 0 <= modulo a b /\ modulo a b < b. Proof. intros a b. zify. intros. apply Z_mod_lt; auto with zarith. Qed. Theorem mod_neg_bound : forall a b, b < 0 -> b < modulo a b /\ modulo a b <= 0. Proof. intros a b. zify. intros. apply Z_mod_neg; auto with zarith. Qed. Definition mod_bound_pos : forall a b, 0<=a -> 0 0 <= modulo a b /\ modulo a b < b := fun a b _ H => mod_pos_bound a b H. (** Quot / Rem *) Program Instance quot_wd : Proper (eq==>eq==>eq) quot. Program Instance rem_wd : Proper (eq==>eq==>eq) rem. Theorem quot_rem : forall a b, ~b==0 -> a == b*(quot a b) + rem a b. Proof. intros a b. zify. apply Z.quot_rem. Qed. Theorem rem_bound_pos : forall a b, 0<=a -> 0 0 <= rem a b /\ rem a b < b. Proof. intros a b. zify. apply Z.rem_bound_pos. Qed. Theorem rem_opp_l : forall a b, ~b==0 -> rem (-a) b == -(rem a b). Proof. intros a b. zify. apply Z.rem_opp_l. Qed. Theorem rem_opp_r : forall a b, ~b==0 -> rem a (-b) == rem a b. Proof. intros a b. zify. apply Z.rem_opp_r. Qed. (** Gcd *) Definition divide n m := exists p, m == p*n. Local Notation "( x | y )" := (divide x y) (at level 0). Lemma spec_divide : forall n m, (n|m) <-> Z.divide [n] [m]. Proof. intros n m. split. - intros (p,H). exists [p]. revert H; now zify. - intros (z,H). exists (of_Z z). now zify. Qed. Lemma gcd_divide_l : forall n m, (gcd n m | n). Proof. intros n m. apply spec_divide. zify. apply Z.gcd_divide_l. Qed. Lemma gcd_divide_r : forall n m, (gcd n m | m). Proof. intros n m. apply spec_divide. zify. apply Z.gcd_divide_r. Qed. Lemma gcd_greatest : forall n m p, (p|n) -> (p|m) -> (p|gcd n m). Proof. intros n m p. rewrite !spec_divide. zify. apply Z.gcd_greatest. Qed. Lemma gcd_nonneg : forall n m, 0 <= gcd n m. Proof. intros. zify. apply Z.gcd_nonneg. Qed. (** Bitwise operations *) Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit. Lemma testbit_odd_0 : forall a, testbit (2*a+1) 0 = true. Proof. intros. zify. apply Z.testbit_odd_0. Qed. Lemma testbit_even_0 : forall a, testbit (2*a) 0 = false. Proof. intros. zify. apply Z.testbit_even_0. Qed. Lemma testbit_odd_succ : forall a n, 0<=n -> testbit (2*a+1) (succ n) = testbit a n. Proof. intros a n. zify. apply Z.testbit_odd_succ. Qed. Lemma testbit_even_succ : forall a n, 0<=n -> testbit (2*a) (succ n) = testbit a n. Proof. intros a n. zify. apply Z.testbit_even_succ. Qed. Lemma testbit_neg_r : forall a n, n<0 -> testbit a n = false. Proof. intros a n. zify. apply Z.testbit_neg_r. Qed. Lemma shiftr_spec : forall a n m, 0<=m -> testbit (shiftr a n) m = testbit a (m+n). Proof. intros a n m. zify. apply Z.shiftr_spec. Qed. Lemma shiftl_spec_high : forall a n m, 0<=m -> n<=m -> testbit (shiftl a n) m = testbit a (m-n). Proof. intros a n m. zify. intros Hn H. now apply Z.shiftl_spec_high. Qed. Lemma shiftl_spec_low : forall a n m, m testbit (shiftl a n) m = false. Proof. intros a n m. zify. intros H. now apply Z.shiftl_spec_low. Qed. Lemma land_spec : forall a b n, testbit (land a b) n = testbit a n && testbit b n. Proof. intros a n m. zify. now apply Z.land_spec. Qed. Lemma lor_spec : forall a b n, testbit (lor a b) n = testbit a n || testbit b n. Proof. intros a n m. zify. now apply Z.lor_spec. Qed. Lemma ldiff_spec : forall a b n, testbit (ldiff a b) n = testbit a n && negb (testbit b n). Proof. intros a n m. zify. now apply Z.ldiff_spec. Qed. Lemma lxor_spec : forall a b n, testbit (lxor a b) n = xorb (testbit a n) (testbit b n). Proof. intros a n m. zify. now apply Z.lxor_spec. Qed. Lemma div2_spec : forall a, div2 a == shiftr a 1. Proof. intros a. zify. now apply Z.div2_spec. Qed. End ZTypeIsZAxioms. Module ZType_ZAxioms (ZZ : ZType) <: ZAxiomsSig <: OrderFunctions ZZ <: HasMinMax ZZ := ZZ <+ ZTypeIsZAxioms.