(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* t_ | Neg : NN.t -> t_. Definition t := t_. Definition zero := Pos NN.zero. Definition one := Pos NN.one. Definition two := Pos NN.two. Definition minus_one := Neg NN.one. Definition of_Z x := match x with | Zpos x => Pos (NN.of_N (Npos x)) | Z0 => zero | Zneg x => Neg (NN.of_N (Npos x)) end. Definition to_Z x := match x with | Pos nx => NN.to_Z nx | Neg nx => Z.opp (NN.to_Z nx) end. Theorem spec_of_Z: forall x, to_Z (of_Z x) = x. Proof. intros x; case x; unfold to_Z, of_Z, zero. exact NN.spec_0. intros; rewrite NN.spec_of_N; auto. intros; rewrite NN.spec_of_N; auto. Qed. Definition eq x y := (to_Z x = to_Z y). Theorem spec_0: to_Z zero = 0. exact NN.spec_0. Qed. Theorem spec_1: to_Z one = 1. exact NN.spec_1. Qed. Theorem spec_2: to_Z two = 2. exact NN.spec_2. Qed. Theorem spec_m1: to_Z minus_one = -1. simpl; rewrite NN.spec_1; auto. Qed. Definition compare x y := match x, y with | Pos nx, Pos ny => NN.compare nx ny | Pos nx, Neg ny => match NN.compare nx NN.zero with | Gt => Gt | _ => NN.compare ny NN.zero end | Neg nx, Pos ny => match NN.compare NN.zero nx with | Lt => Lt | _ => NN.compare NN.zero ny end | Neg nx, Neg ny => NN.compare ny nx end. Theorem spec_compare : forall x y, compare x y = Z.compare (to_Z x) (to_Z y). Proof. unfold compare, to_Z. destruct x as [x|x], y as [y|y]; rewrite ?NN.spec_compare, ?NN.spec_0, ?Z.compare_opp; auto; assert (Hx:=NN.spec_pos x); assert (Hy:=NN.spec_pos y); set (X:=NN.to_Z x) in *; set (Y:=NN.to_Z y) in *; clearbody X Y. - destruct (Z.compare_spec X 0) as [EQ|LT|GT]. + rewrite <- Z.opp_0 in EQ. now rewrite EQ, Z.compare_opp. + exfalso. omega. + symmetry. change (X > -Y). omega. - destruct (Z.compare_spec 0 X) as [EQ|LT|GT]. + rewrite <- EQ, Z.opp_0; auto. + symmetry. change (-X < Y). omega. + exfalso. omega. Qed. Definition eqb x y := match compare x y with | Eq => true | _ => false end. Theorem spec_eqb x y : eqb x y = Z.eqb (to_Z x) (to_Z y). Proof. apply Bool.eq_iff_eq_true. unfold eqb. rewrite Z.eqb_eq, <- Z.compare_eq_iff, spec_compare. split; [now destruct Z.compare | now intros ->]. Qed. Definition lt n m := to_Z n < to_Z m. Definition le n m := to_Z n <= to_Z m. Definition ltb (x y : t) : bool := match compare x y with | Lt => true | _ => false end. Theorem spec_ltb x y : ltb x y = Z.ltb (to_Z x) (to_Z y). Proof. apply Bool.eq_iff_eq_true. rewrite Z.ltb_lt. unfold Z.lt, ltb. rewrite spec_compare. split; [now destruct Z.compare | now intros ->]. Qed. Definition leb (x y : t) : bool := match compare x y with | Gt => false | _ => true end. Theorem spec_leb x y : leb x y = Z.leb (to_Z x) (to_Z y). Proof. apply Bool.eq_iff_eq_true. rewrite Z.leb_le. unfold Z.le, leb. rewrite spec_compare. destruct Z.compare; split; try easy. now destruct 1. Qed. Definition min n m := match compare n m with Gt => m | _ => n end. Definition max n m := match compare n m with Lt => m | _ => n end. Theorem spec_min : forall n m, to_Z (min n m) = Z.min (to_Z n) (to_Z m). Proof. unfold min, Z.min. intros. rewrite spec_compare. destruct Z.compare; auto. Qed. Theorem spec_max : forall n m, to_Z (max n m) = Z.max (to_Z n) (to_Z m). Proof. unfold max, Z.max. intros. rewrite spec_compare. destruct Z.compare; auto. Qed. Definition to_N x := match x with | Pos nx => nx | Neg nx => nx end. Definition abs x := Pos (to_N x). Theorem spec_abs: forall x, to_Z (abs x) = Z.abs (to_Z x). Proof. intros x; case x; clear x; intros x; assert (F:=NN.spec_pos x). simpl; rewrite Z.abs_eq; auto. simpl; rewrite Z.abs_neq; simpl; auto with zarith. Qed. Definition opp x := match x with | Pos nx => Neg nx | Neg nx => Pos nx end. Theorem spec_opp: forall x, to_Z (opp x) = - to_Z x. Proof. intros x; case x; simpl; auto with zarith. Qed. Definition succ x := match x with | Pos n => Pos (NN.succ n) | Neg n => match NN.compare NN.zero n with | Lt => Neg (NN.pred n) | _ => one end end. Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1. Proof. intros x; case x; clear x; intros x. exact (NN.spec_succ x). simpl. rewrite NN.spec_compare. case Z.compare_spec; rewrite ?NN.spec_0; simpl. intros HH; rewrite <- HH; rewrite NN.spec_1; ring. intros HH; rewrite NN.spec_pred, Z.max_r; auto with zarith. generalize (NN.spec_pos x); auto with zarith. Qed. Definition add x y := match x, y with | Pos nx, Pos ny => Pos (NN.add nx ny) | Pos nx, Neg ny => match NN.compare nx ny with | Gt => Pos (NN.sub nx ny) | Eq => zero | Lt => Neg (NN.sub ny nx) end | Neg nx, Pos ny => match NN.compare nx ny with | Gt => Neg (NN.sub nx ny) | Eq => zero | Lt => Pos (NN.sub ny nx) end | Neg nx, Neg ny => Neg (NN.add nx ny) end. Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y. Proof. unfold add, to_Z; intros [x | x] [y | y]; try (rewrite NN.spec_add; auto with zarith); rewrite NN.spec_compare; case Z.compare_spec; unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *. Qed. Definition pred x := match x with | Pos nx => match NN.compare NN.zero nx with | Lt => Pos (NN.pred nx) | _ => minus_one end | Neg nx => Neg (NN.succ nx) end. Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1. Proof. unfold pred, to_Z, minus_one; intros [x | x]; try (rewrite NN.spec_succ; ring). rewrite NN.spec_compare; case Z.compare_spec; rewrite ?NN.spec_0, ?NN.spec_1, ?NN.spec_pred; generalize (NN.spec_pos x); omega with *. Qed. Definition sub x y := match x, y with | Pos nx, Pos ny => match NN.compare nx ny with | Gt => Pos (NN.sub nx ny) | Eq => zero | Lt => Neg (NN.sub ny nx) end | Pos nx, Neg ny => Pos (NN.add nx ny) | Neg nx, Pos ny => Neg (NN.add nx ny) | Neg nx, Neg ny => match NN.compare nx ny with | Gt => Neg (NN.sub nx ny) | Eq => zero | Lt => Pos (NN.sub ny nx) end end. Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y. Proof. unfold sub, to_Z; intros [x | x] [y | y]; try (rewrite NN.spec_add; auto with zarith); rewrite NN.spec_compare; case Z.compare_spec; unfold zero; rewrite ?NN.spec_0, ?NN.spec_sub; omega with *. Qed. Definition mul x y := match x, y with | Pos nx, Pos ny => Pos (NN.mul nx ny) | Pos nx, Neg ny => Neg (NN.mul nx ny) | Neg nx, Pos ny => Neg (NN.mul nx ny) | Neg nx, Neg ny => Pos (NN.mul nx ny) end. Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y. Proof. unfold mul, to_Z; intros [x | x] [y | y]; rewrite NN.spec_mul; ring. Qed. Definition square x := match x with | Pos nx => Pos (NN.square nx) | Neg nx => Pos (NN.square nx) end. Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x. Proof. unfold square, to_Z; intros [x | x]; rewrite NN.spec_square; ring. Qed. Definition pow_pos x p := match x with | Pos nx => Pos (NN.pow_pos nx p) | Neg nx => match p with | xH => x | xO _ => Pos (NN.pow_pos nx p) | xI _ => Neg (NN.pow_pos nx p) end end. Theorem spec_pow_pos: forall x n, to_Z (pow_pos x n) = to_Z x ^ Zpos n. Proof. assert (F0: forall x, (-x)^2 = x^2). intros x; rewrite Z.pow_2_r; ring. unfold pow_pos, to_Z; intros [x | x] [p | p |]; try rewrite NN.spec_pow_pos; try ring. assert (F: 0 <= 2 * Zpos p). assert (0 <= Zpos p); auto with zarith. rewrite Pos2Z.inj_xI; repeat rewrite Zpower_exp; auto with zarith. repeat rewrite Z.pow_mul_r; auto with zarith. rewrite F0; ring. assert (F: 0 <= 2 * Zpos p). assert (0 <= Zpos p); auto with zarith. rewrite Pos2Z.inj_xO; repeat rewrite Zpower_exp; auto with zarith. repeat rewrite Z.pow_mul_r; auto with zarith. rewrite F0; ring. Qed. Definition pow_N x n := match n with | N0 => one | Npos p => pow_pos x p end. Theorem spec_pow_N: forall x n, to_Z (pow_N x n) = to_Z x ^ Z.of_N n. Proof. destruct n; simpl. apply NN.spec_1. apply spec_pow_pos. Qed. Definition pow x y := match to_Z y with | Z0 => one | Zpos p => pow_pos x p | Zneg p => zero end. Theorem spec_pow: forall x y, to_Z (pow x y) = to_Z x ^ to_Z y. Proof. intros. unfold pow. destruct (to_Z y); simpl. apply NN.spec_1. apply spec_pow_pos. apply NN.spec_0. Qed. Definition log2 x := match x with | Pos nx => Pos (NN.log2 nx) | Neg nx => zero end. Theorem spec_log2: forall x, to_Z (log2 x) = Z.log2 (to_Z x). Proof. intros. destruct x as [p|p]; simpl. apply NN.spec_log2. rewrite NN.spec_0. destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ]. rewrite Z.log2_nonpos; auto with zarith. now rewrite <- EQ. Qed. Definition sqrt x := match x with | Pos nx => Pos (NN.sqrt nx) | Neg nx => Neg NN.zero end. Theorem spec_sqrt: forall x, to_Z (sqrt x) = Z.sqrt (to_Z x). Proof. destruct x as [p|p]; simpl. apply NN.spec_sqrt. rewrite NN.spec_0. destruct (Z_le_lt_eq_dec _ _ (NN.spec_pos p)) as [LT|EQ]. rewrite Z.sqrt_neg; auto with zarith. now rewrite <- EQ. Qed. Definition div_eucl x y := match x, y with | Pos nx, Pos ny => let (q, r) := NN.div_eucl nx ny in (Pos q, Pos r) | Pos nx, Neg ny => let (q, r) := NN.div_eucl nx ny in if NN.eqb NN.zero r then (Neg q, zero) else (Neg (NN.succ q), Neg (NN.sub ny r)) | Neg nx, Pos ny => let (q, r) := NN.div_eucl nx ny in if NN.eqb NN.zero r then (Neg q, zero) else (Neg (NN.succ q), Pos (NN.sub ny r)) | Neg nx, Neg ny => let (q, r) := NN.div_eucl nx ny in (Pos q, Neg r) end. Ltac break_nonneg x px EQx := let H := fresh "H" in assert (H:=NN.spec_pos x); destruct (NN.to_Z x) as [|px|px] eqn:EQx; [clear H|clear H|elim H; reflexivity]. Theorem spec_div_eucl: forall x y, let (q,r) := div_eucl x y in (to_Z q, to_Z r) = Z.div_eucl (to_Z x) (to_Z y). Proof. unfold div_eucl, to_Z. intros [x | x] [y | y]. (* Pos Pos *) generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y); auto. (* Pos Neg *) generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). break_nonneg x px EQx; break_nonneg y py EQy; try (injection 1; intros Hr Hq; rewrite NN.spec_eqb, NN.spec_0, Hr; simpl; rewrite Hq, NN.spec_0; auto). change (- Zpos py) with (Zneg py). assert (GT : Zpos py > 0) by (compute; auto). generalize (Z_div_mod (Zpos px) (Zpos py) GT). unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r'). intros (EQ,MOD). injection 1. intros Hr' Hq'. rewrite NN.spec_eqb, NN.spec_0, Hr'. break_nonneg r pr EQr. subst; simpl. rewrite NN.spec_0; auto. subst. lazy iota beta delta [Z.eqb]. rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *. (* Neg Pos *) generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). break_nonneg x px EQx; break_nonneg y py EQy; try (injection 1; intros Hr Hq; rewrite NN.spec_eqb, NN.spec_0, Hr; simpl; rewrite Hq, NN.spec_0; auto). change (- Zpos px) with (Zneg px). assert (GT : Zpos py > 0) by (compute; auto). generalize (Z_div_mod (Zpos px) (Zpos py) GT). unfold Z.div_eucl. destruct (Z.pos_div_eucl px (Zpos py)) as (q',r'). intros (EQ,MOD). injection 1. intros Hr' Hq'. rewrite NN.spec_eqb, NN.spec_0, Hr'. break_nonneg r pr EQr. subst; simpl. rewrite NN.spec_0; auto. subst. lazy iota beta delta [Z.eqb]. rewrite NN.spec_sub, NN.spec_succ, EQy, EQr. f_equal. omega with *. (* Neg Neg *) generalize (NN.spec_div_eucl x y); destruct (NN.div_eucl x y) as (q,r). break_nonneg x px EQx; break_nonneg y py EQy; try (injection 1; intros Hr Hq; rewrite Hr, Hq; auto). simpl. intros <-; auto. Qed. Definition div x y := fst (div_eucl x y). Definition spec_div: forall x y, to_Z (div x y) = to_Z x / to_Z y. Proof. intros x y; generalize (spec_div_eucl x y); unfold div, Z.div. case div_eucl; case Z.div_eucl; simpl; auto. intros q r q11 r1 H; injection H; auto. Qed. Definition modulo x y := snd (div_eucl x y). Theorem spec_modulo: forall x y, to_Z (modulo x y) = to_Z x mod to_Z y. Proof. intros x y; generalize (spec_div_eucl x y); unfold modulo, Z.modulo. case div_eucl; case Z.div_eucl; simpl; auto. intros q r q11 r1 H; injection H; auto. Qed. Definition quot x y := match x, y with | Pos nx, Pos ny => Pos (NN.div nx ny) | Pos nx, Neg ny => Neg (NN.div nx ny) | Neg nx, Pos ny => Neg (NN.div nx ny) | Neg nx, Neg ny => Pos (NN.div nx ny) end. Definition rem x y := if eqb y zero then x else match x, y with | Pos nx, Pos ny => Pos (NN.modulo nx ny) | Pos nx, Neg ny => Pos (NN.modulo nx ny) | Neg nx, Pos ny => Neg (NN.modulo nx ny) | Neg nx, Neg ny => Neg (NN.modulo nx ny) end. Lemma spec_quot : forall x y, to_Z (quot x y) = (to_Z x) ÷ (to_Z y). Proof. intros [x|x] [y|y]; simpl; symmetry; rewrite NN.spec_div; (* Nota: we rely here on [forall a b, a ÷ 0 = b / 0] *) destruct (Z.eq_dec (NN.to_Z y) 0) as [EQ|NEQ]; try (rewrite EQ; now destruct (NN.to_Z x)); rewrite ?Z.quot_opp_r, ?Z.quot_opp_l, ?Z.opp_involutive, ?Z.opp_inj_wd; trivial; apply Z.quot_div_nonneg; generalize (NN.spec_pos x) (NN.spec_pos y); Z.order. Qed. Lemma spec_rem : forall x y, to_Z (rem x y) = Z.rem (to_Z x) (to_Z y). Proof. intros x y. unfold rem. rewrite spec_eqb, spec_0. case Z.eqb_spec; intros Hy. (* Nota: we rely here on [Z.rem a 0 = a] *) rewrite Hy. now destruct (to_Z x). destruct x as [x|x], y as [y|y]; simpl in *; symmetry; rewrite ?Z.eq_opp_l, ?Z.opp_0 in Hy; rewrite NN.spec_modulo, ?Z.rem_opp_r, ?Z.rem_opp_l, ?Z.opp_involutive, ?Z.opp_inj_wd; trivial; apply Z.rem_mod_nonneg; generalize (NN.spec_pos x) (NN.spec_pos y); Z.order. Qed. Definition gcd x y := match x, y with | Pos nx, Pos ny => Pos (NN.gcd nx ny) | Pos nx, Neg ny => Pos (NN.gcd nx ny) | Neg nx, Pos ny => Pos (NN.gcd nx ny) | Neg nx, Neg ny => Pos (NN.gcd nx ny) end. Theorem spec_gcd: forall a b, to_Z (gcd a b) = Z.gcd (to_Z a) (to_Z b). Proof. unfold gcd, Z.gcd, to_Z; intros [x | x] [y | y]; rewrite NN.spec_gcd; unfold Z.gcd; auto; case NN.to_Z; simpl; auto with zarith; try rewrite Z.abs_opp; auto; case NN.to_Z; simpl; auto with zarith. Qed. Definition sgn x := match compare zero x with | Lt => one | Eq => zero | Gt => minus_one end. Lemma spec_sgn : forall x, to_Z (sgn x) = Z.sgn (to_Z x). Proof. intros. unfold sgn. rewrite spec_compare. case Z.compare_spec. rewrite spec_0. intros <-; auto. rewrite spec_0, spec_1. symmetry. rewrite Z.sgn_pos_iff; auto. rewrite spec_0, spec_m1. symmetry. rewrite Z.sgn_neg_iff; auto with zarith. Qed. Definition even z := match z with | Pos n => NN.even n | Neg n => NN.even n end. Definition odd z := match z with | Pos n => NN.odd n | Neg n => NN.odd n end. Lemma spec_even : forall z, even z = Z.even (to_Z z). Proof. intros [n|n]; simpl; rewrite NN.spec_even; trivial. destruct (NN.to_Z n) as [|p|p]; now try destruct p. Qed. Lemma spec_odd : forall z, odd z = Z.odd (to_Z z). Proof. intros [n|n]; simpl; rewrite NN.spec_odd; trivial. destruct (NN.to_Z n) as [|p|p]; now try destruct p. Qed. Definition norm_pos z := match z with | Pos _ => z | Neg n => if NN.eqb n NN.zero then Pos n else z end. Definition testbit a n := match norm_pos n, norm_pos a with | Pos p, Pos a => NN.testbit a p | Pos p, Neg a => negb (NN.testbit (NN.pred a) p) | Neg p, _ => false end. Definition shiftl a n := match norm_pos a, n with | Pos a, Pos n => Pos (NN.shiftl a n) | Pos a, Neg n => Pos (NN.shiftr a n) | Neg a, Pos n => Neg (NN.shiftl a n) | Neg a, Neg n => Neg (NN.succ (NN.shiftr (NN.pred a) n)) end. Definition shiftr a n := shiftl a (opp n). Definition lor a b := match norm_pos a, norm_pos b with | Pos a, Pos b => Pos (NN.lor a b) | Neg a, Pos b => Neg (NN.succ (NN.ldiff (NN.pred a) b)) | Pos a, Neg b => Neg (NN.succ (NN.ldiff (NN.pred b) a)) | Neg a, Neg b => Neg (NN.succ (NN.land (NN.pred a) (NN.pred b))) end. Definition land a b := match norm_pos a, norm_pos b with | Pos a, Pos b => Pos (NN.land a b) | Neg a, Pos b => Pos (NN.ldiff b (NN.pred a)) | Pos a, Neg b => Pos (NN.ldiff a (NN.pred b)) | Neg a, Neg b => Neg (NN.succ (NN.lor (NN.pred a) (NN.pred b))) end. Definition ldiff a b := match norm_pos a, norm_pos b with | Pos a, Pos b => Pos (NN.ldiff a b) | Neg a, Pos b => Neg (NN.succ (NN.lor (NN.pred a) b)) | Pos a, Neg b => Pos (NN.land a (NN.pred b)) | Neg a, Neg b => Pos (NN.ldiff (NN.pred b) (NN.pred a)) end. Definition lxor a b := match norm_pos a, norm_pos b with | Pos a, Pos b => Pos (NN.lxor a b) | Neg a, Pos b => Neg (NN.succ (NN.lxor (NN.pred a) b)) | Pos a, Neg b => Neg (NN.succ (NN.lxor a (NN.pred b))) | Neg a, Neg b => Pos (NN.lxor (NN.pred a) (NN.pred b)) end. Definition div2 x := shiftr x one. Lemma Zlnot_alt1 : forall x, -(x+1) = Z.lnot x. Proof. unfold Z.lnot, Z.pred; auto with zarith. Qed. Lemma Zlnot_alt2 : forall x, Z.lnot (x-1) = -x. Proof. unfold Z.lnot, Z.pred; auto with zarith. Qed. Lemma Zlnot_alt3 : forall x, Z.lnot (-x) = x-1. Proof. unfold Z.lnot, Z.pred; auto with zarith. Qed. Lemma spec_norm_pos : forall x, to_Z (norm_pos x) = to_Z x. Proof. intros [x|x]; simpl; trivial. rewrite NN.spec_eqb, NN.spec_0. case Z.eqb_spec; simpl; auto with zarith. Qed. Lemma spec_norm_pos_pos : forall x y, norm_pos x = Neg y -> 0 < NN.to_Z y. Proof. intros [x|x] y; simpl; try easy. rewrite NN.spec_eqb, NN.spec_0. case Z.eqb_spec; simpl; try easy. inversion 2. subst. generalize (NN.spec_pos y); auto with zarith. Qed. Ltac destr_norm_pos x := rewrite <- (spec_norm_pos x); let H := fresh in let x' := fresh x in assert (H := spec_norm_pos_pos x); destruct (norm_pos x) as [x'|x']; specialize (H x' (eq_refl _)) || clear H. Lemma spec_testbit: forall x p, testbit x p = Z.testbit (to_Z x) (to_Z p). Proof. intros x p. unfold testbit. destr_norm_pos p; simpl. destr_norm_pos x; simpl. apply NN.spec_testbit. rewrite NN.spec_testbit, NN.spec_pred, Z.max_r by auto with zarith. symmetry. apply Z.bits_opp. apply NN.spec_pos. symmetry. apply Z.testbit_neg_r; auto with zarith. Qed. Lemma spec_shiftl: forall x p, to_Z (shiftl x p) = Z.shiftl (to_Z x) (to_Z p). Proof. intros x p. unfold shiftl. destr_norm_pos x; destruct p as [p|p]; simpl; assert (Hp := NN.spec_pos p). apply NN.spec_shiftl. rewrite Z.shiftl_opp_r. apply NN.spec_shiftr. rewrite !NN.spec_shiftl. rewrite !Z.shiftl_mul_pow2 by apply NN.spec_pos. symmetry. apply Z.mul_opp_l. rewrite Z.shiftl_opp_r, NN.spec_succ, NN.spec_shiftr, NN.spec_pred, Z.max_r by auto with zarith. now rewrite Zlnot_alt1, Z.lnot_shiftr, Zlnot_alt2. Qed. Lemma spec_shiftr: forall x p, to_Z (shiftr x p) = Z.shiftr (to_Z x) (to_Z p). Proof. intros. unfold shiftr. rewrite spec_shiftl, spec_opp. apply Z.shiftl_opp_r. Qed. Lemma spec_land: forall x y, to_Z (land x y) = Z.land (to_Z x) (to_Z y). Proof. intros x y. unfold land. destr_norm_pos x; destr_norm_pos y; simpl; rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite Z.ldiff_land, Zlnot_alt2. now rewrite Z.ldiff_land, Z.land_comm, Zlnot_alt2. now rewrite Z.lnot_lor, !Zlnot_alt2. Qed. Lemma spec_lor: forall x y, to_Z (lor x y) = Z.lor (to_Z x) (to_Z y). Proof. intros x y. unfold lor. destr_norm_pos x; destr_norm_pos y; simpl; rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite Z.lnot_ldiff, Z.lor_comm, Zlnot_alt2. now rewrite Z.lnot_ldiff, Zlnot_alt2. now rewrite Z.lnot_land, !Zlnot_alt2. Qed. Lemma spec_ldiff: forall x y, to_Z (ldiff x y) = Z.ldiff (to_Z x) (to_Z y). Proof. intros x y. unfold ldiff. destr_norm_pos x; destr_norm_pos y; simpl; rewrite ?NN.spec_succ, ?NN.spec_land, ?NN.spec_ldiff, ?NN.spec_lor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite Z.ldiff_land, Zlnot_alt3. now rewrite Z.lnot_lor, Z.ldiff_land, <- Zlnot_alt2. now rewrite 2 Z.ldiff_land, Zlnot_alt2, Z.land_comm, Zlnot_alt3. Qed. Lemma spec_lxor: forall x y, to_Z (lxor x y) = Z.lxor (to_Z x) (to_Z y). Proof. intros x y. unfold lxor. destr_norm_pos x; destr_norm_pos y; simpl; rewrite ?NN.spec_succ, ?NN.spec_lxor, ?NN.spec_pred, ?Z.max_r, ?Zlnot_alt1; auto with zarith. now rewrite !Z.lnot_lxor_r, Zlnot_alt2. now rewrite !Z.lnot_lxor_l, Zlnot_alt2. now rewrite <- Z.lxor_lnot_lnot, !Zlnot_alt2. Qed. Lemma spec_div2: forall x, to_Z (div2 x) = Z.div2 (to_Z x). Proof. intros x. unfold div2. now rewrite spec_shiftr, Z.div2_spec, spec_1. Qed. End Make.