(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* forall m1 m2 : Z, m1 == m2 -> (n1 < m1 <-> n2 < m2). Proof NZlt_wd. Theorem Zle_wd : forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> (n1 <= m1 <-> n2 <= m2). Proof NZle_wd. Theorem Zmin_wd : forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> Zmin n1 m1 == Zmin n2 m2. Proof NZmin_wd. Theorem Zmax_wd : forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> Zmax n1 m1 == Zmax n2 m2. Proof NZmax_wd. Theorem Zlt_eq_cases : forall n m : Z, n <= m <-> n < m \/ n == m. Proof NZlt_eq_cases. Theorem Zlt_irrefl : forall n : Z, ~ n < n. Proof NZlt_irrefl. Theorem Zlt_succ_r : forall n m : Z, n < S m <-> n <= m. Proof NZlt_succ_r. Theorem Zmin_l : forall n m : Z, n <= m -> Zmin n m == n. Proof NZmin_l. Theorem Zmin_r : forall n m : Z, m <= n -> Zmin n m == m. Proof NZmin_r. Theorem Zmax_l : forall n m : Z, m <= n -> Zmax n m == n. Proof NZmax_l. Theorem Zmax_r : forall n m : Z, n <= m -> Zmax n m == m. Proof NZmax_r. (* Renaming theorems from NZOrder.v *) Theorem Zlt_le_incl : forall n m : Z, n < m -> n <= m. Proof NZlt_le_incl. Theorem Zlt_neq : forall n m : Z, n < m -> n ~= m. Proof NZlt_neq. Theorem Zle_neq : forall n m : Z, n < m <-> n <= m /\ n ~= m. Proof NZle_neq. Theorem Zle_refl : forall n : Z, n <= n. Proof NZle_refl. Theorem Zlt_succ_diag_r : forall n : Z, n < S n. Proof NZlt_succ_diag_r. Theorem Zle_succ_diag_r : forall n : Z, n <= S n. Proof NZle_succ_diag_r. Theorem Zlt_0_1 : 0 < 1. Proof NZlt_0_1. Theorem Zle_0_1 : 0 <= 1. Proof NZle_0_1. Theorem Zlt_lt_succ_r : forall n m : Z, n < m -> n < S m. Proof NZlt_lt_succ_r. Theorem Zle_le_succ_r : forall n m : Z, n <= m -> n <= S m. Proof NZle_le_succ_r. Theorem Zle_succ_r : forall n m : Z, n <= S m <-> n <= m \/ n == S m. Proof NZle_succ_r. Theorem Zneq_succ_diag_l : forall n : Z, S n ~= n. Proof NZneq_succ_diag_l. Theorem Zneq_succ_diag_r : forall n : Z, n ~= S n. Proof NZneq_succ_diag_r. Theorem Znlt_succ_diag_l : forall n : Z, ~ S n < n. Proof NZnlt_succ_diag_l. Theorem Znle_succ_diag_l : forall n : Z, ~ S n <= n. Proof NZnle_succ_diag_l. Theorem Zle_succ_l : forall n m : Z, S n <= m <-> n < m. Proof NZle_succ_l. Theorem Zlt_succ_l : forall n m : Z, S n < m -> n < m. Proof NZlt_succ_l. Theorem Zsucc_lt_mono : forall n m : Z, n < m <-> S n < S m. Proof NZsucc_lt_mono. Theorem Zsucc_le_mono : forall n m : Z, n <= m <-> S n <= S m. Proof NZsucc_le_mono. Theorem Zlt_asymm : forall n m, n < m -> ~ m < n. Proof NZlt_asymm. Notation Zlt_ngt := Zlt_asymm (only parsing). Theorem Zlt_trans : forall n m p : Z, n < m -> m < p -> n < p. Proof NZlt_trans. Theorem Zle_trans : forall n m p : Z, n <= m -> m <= p -> n <= p. Proof NZle_trans. Theorem Zle_lt_trans : forall n m p : Z, n <= m -> m < p -> n < p. Proof NZle_lt_trans. Theorem Zlt_le_trans : forall n m p : Z, n < m -> m <= p -> n < p. Proof NZlt_le_trans. Theorem Zle_antisymm : forall n m : Z, n <= m -> m <= n -> n == m. Proof NZle_antisymm. Theorem Zlt_1_l : forall n m : Z, 0 < n -> n < m -> 1 < m. Proof NZlt_1_l. (** Trichotomy, decidability, and double negation elimination *) Theorem Zlt_trichotomy : forall n m : Z, n < m \/ n == m \/ m < n. Proof NZlt_trichotomy. Notation Zlt_eq_gt_cases := Zlt_trichotomy (only parsing). Theorem Zlt_gt_cases : forall n m : Z, n ~= m <-> n < m \/ n > m. Proof NZlt_gt_cases. Theorem Zle_gt_cases : forall n m : Z, n <= m \/ n > m. Proof NZle_gt_cases. Theorem Zlt_ge_cases : forall n m : Z, n < m \/ n >= m. Proof NZlt_ge_cases. Theorem Zle_ge_cases : forall n m : Z, n <= m \/ n >= m. Proof NZle_ge_cases. (** Instances of the previous theorems for m == 0 *) Theorem Zneg_pos_cases : forall n : Z, n ~= 0 <-> n < 0 \/ n > 0. Proof. intro; apply Zlt_gt_cases. Qed. Theorem Znonpos_pos_cases : forall n : Z, n <= 0 \/ n > 0. Proof. intro; apply Zle_gt_cases. Qed. Theorem Zneg_nonneg_cases : forall n : Z, n < 0 \/ n >= 0. Proof. intro; apply Zlt_ge_cases. Qed. Theorem Znonpos_nonneg_cases : forall n : Z, n <= 0 \/ n >= 0. Proof. intro; apply Zle_ge_cases. Qed. Theorem Zle_ngt : forall n m : Z, n <= m <-> ~ n > m. Proof NZle_ngt. Theorem Znlt_ge : forall n m : Z, ~ n < m <-> n >= m. Proof NZnlt_ge. Theorem Zlt_dec : forall n m : Z, decidable (n < m). Proof NZlt_dec. Theorem Zlt_dne : forall n m, ~ ~ n < m <-> n < m. Proof NZlt_dne. Theorem Znle_gt : forall n m : Z, ~ n <= m <-> n > m. Proof NZnle_gt. Theorem Zlt_nge : forall n m : Z, n < m <-> ~ n >= m. Proof NZlt_nge. Theorem Zle_dec : forall n m : Z, decidable (n <= m). Proof NZle_dec. Theorem Zle_dne : forall n m : Z, ~ ~ n <= m <-> n <= m. Proof NZle_dne. Theorem Znlt_succ_r : forall n m : Z, ~ m < S n <-> n < m. Proof NZnlt_succ_r. Theorem Zlt_exists_pred : forall z n : Z, z < n -> exists k : Z, n == S k /\ z <= k. Proof NZlt_exists_pred. Theorem Zlt_succ_iter_r : forall (n : nat) (m : Z), m < NZsucc_iter (Datatypes.S n) m. Proof NZlt_succ_iter_r. Theorem Zneq_succ_iter_l : forall (n : nat) (m : Z), NZsucc_iter (Datatypes.S n) m ~= m. Proof NZneq_succ_iter_l. (** Stronger variant of induction with assumptions n >= 0 (n < 0) in the induction step *) Theorem Zright_induction : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, A z -> (forall n : Z, z <= n -> A n -> A (S n)) -> forall n : Z, z <= n -> A n. Proof NZright_induction. Theorem Zleft_induction : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, A z -> (forall n : Z, n < z -> A (S n) -> A n) -> forall n : Z, n <= z -> A n. Proof NZleft_induction. Theorem Zright_induction' : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, (forall n : Z, n <= z -> A n) -> (forall n : Z, z <= n -> A n -> A (S n)) -> forall n : Z, A n. Proof NZright_induction'. Theorem Zleft_induction' : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, (forall n : Z, z <= n -> A n) -> (forall n : Z, n < z -> A (S n) -> A n) -> forall n : Z, A n. Proof NZleft_induction'. Theorem Zstrong_right_induction : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, (forall n : Z, z <= n -> (forall m : Z, z <= m -> m < n -> A m) -> A n) -> forall n : Z, z <= n -> A n. Proof NZstrong_right_induction. Theorem Zstrong_left_induction : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, (forall n : Z, n <= z -> (forall m : Z, m <= z -> S n <= m -> A m) -> A n) -> forall n : Z, n <= z -> A n. Proof NZstrong_left_induction. Theorem Zstrong_right_induction' : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, (forall n : Z, n <= z -> A n) -> (forall n : Z, z <= n -> (forall m : Z, z <= m -> m < n -> A m) -> A n) -> forall n : Z, A n. Proof NZstrong_right_induction'. Theorem Zstrong_left_induction' : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, (forall n : Z, z <= n -> A n) -> (forall n : Z, n <= z -> (forall m : Z, m <= z -> S n <= m -> A m) -> A n) -> forall n : Z, A n. Proof NZstrong_left_induction'. Theorem Zorder_induction : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, A z -> (forall n : Z, z <= n -> A n -> A (S n)) -> (forall n : Z, n < z -> A (S n) -> A n) -> forall n : Z, A n. Proof NZorder_induction. Theorem Zorder_induction' : forall A : Z -> Prop, predicate_wd Zeq A -> forall z : Z, A z -> (forall n : Z, z <= n -> A n -> A (S n)) -> (forall n : Z, n <= z -> A n -> A (P n)) -> forall n : Z, A n. Proof NZorder_induction'. Theorem Zorder_induction_0 : forall A : Z -> Prop, predicate_wd Zeq A -> A 0 -> (forall n : Z, 0 <= n -> A n -> A (S n)) -> (forall n : Z, n < 0 -> A (S n) -> A n) -> forall n : Z, A n. Proof NZorder_induction_0. Theorem Zorder_induction'_0 : forall A : Z -> Prop, predicate_wd Zeq A -> A 0 -> (forall n : Z, 0 <= n -> A n -> A (S n)) -> (forall n : Z, n <= 0 -> A n -> A (P n)) -> forall n : Z, A n. Proof NZorder_induction'_0. Ltac Zinduct n := induction_maker n ltac:(apply Zorder_induction_0). (** Elimintation principle for < *) Theorem Zlt_ind : forall A : Z -> Prop, predicate_wd Zeq A -> forall n : Z, A (S n) -> (forall m : Z, n < m -> A m -> A (S m)) -> forall m : Z, n < m -> A m. Proof NZlt_ind. (** Elimintation principle for <= *) Theorem Zle_ind : forall A : Z -> Prop, predicate_wd Zeq A -> forall n : Z, A n -> (forall m : Z, n <= m -> A m -> A (S m)) -> forall m : Z, n <= m -> A m. Proof NZle_ind. (** Well-founded relations *) Theorem Zlt_wf : forall z : Z, well_founded (fun n m : Z => z <= n /\ n < m). Proof NZlt_wf. Theorem Zgt_wf : forall z : Z, well_founded (fun n m : Z => m < n /\ n <= z). Proof NZgt_wf. (* Theorems that are either not valid on N or have different proofs on N and Z *) Theorem Zlt_pred_l : forall n : Z, P n < n. Proof. intro n; rewrite <- (Zsucc_pred n) at 2; apply Zlt_succ_diag_r. Qed. Theorem Zle_pred_l : forall n : Z, P n <= n. Proof. intro; apply Zlt_le_incl; apply Zlt_pred_l. Qed. Theorem Zlt_le_pred : forall n m : Z, n < m <-> n <= P m. Proof. intros n m; rewrite <- (Zsucc_pred m); rewrite Zpred_succ. apply Zlt_succ_r. Qed. Theorem Znle_pred_r : forall n : Z, ~ n <= P n. Proof. intro; rewrite <- Zlt_le_pred; apply Zlt_irrefl. Qed. Theorem Zlt_pred_le : forall n m : Z, P n < m <-> n <= m. Proof. intros n m; rewrite <- (Zsucc_pred n) at 2. symmetry; apply Zle_succ_l. Qed. Theorem Zlt_lt_pred : forall n m : Z, n < m -> P n < m. Proof. intros; apply <- Zlt_pred_le; now apply Zlt_le_incl. Qed. Theorem Zle_le_pred : forall n m : Z, n <= m -> P n <= m. Proof. intros; apply Zlt_le_incl; now apply <- Zlt_pred_le. Qed. Theorem Zlt_pred_lt : forall n m : Z, n < P m -> n < m. Proof. intros n m H; apply Zlt_trans with (P m); [assumption | apply Zlt_pred_l]. Qed. Theorem Zle_pred_lt : forall n m : Z, n <= P m -> n <= m. Proof. intros; apply Zlt_le_incl; now apply <- Zlt_le_pred. Qed. Theorem Zpred_lt_mono : forall n m : Z, n < m <-> P n < P m. Proof. intros; rewrite Zlt_le_pred; symmetry; apply Zlt_pred_le. Qed. Theorem Zpred_le_mono : forall n m : Z, n <= m <-> P n <= P m. Proof. intros; rewrite <- Zlt_pred_le; now rewrite Zlt_le_pred. Qed. Theorem Zlt_succ_lt_pred : forall n m : Z, S n < m <-> n < P m. Proof. intros n m; now rewrite (Zpred_lt_mono (S n) m), Zpred_succ. Qed. Theorem Zle_succ_le_pred : forall n m : Z, S n <= m <-> n <= P m. Proof. intros n m; now rewrite (Zpred_le_mono (S n) m), Zpred_succ. Qed. Theorem Zlt_pred_lt_succ : forall n m : Z, P n < m <-> n < S m. Proof. intros; rewrite Zlt_pred_le; symmetry; apply Zlt_succ_r. Qed. Theorem Zle_pred_lt_succ : forall n m : Z, P n <= m <-> n <= S m. Proof. intros n m; now rewrite (Zpred_le_mono n (S m)), Zpred_succ. Qed. Theorem Zneq_pred_l : forall n : Z, P n ~= n. Proof. intro; apply Zlt_neq; apply Zlt_pred_l. Qed. Theorem Zlt_n1_r : forall n m : Z, n < m -> m < 0 -> n < -1. Proof. intros n m H1 H2. apply -> Zlt_le_pred in H2. setoid_replace (P 0) with (-1) in H2. now apply NZlt_le_trans with m. apply <- Zeq_opp_r. now rewrite Zopp_pred, Zopp_0. Qed. End ZOrderPropFunct.