(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0 a÷b == a/b. Proof. intros. apply div_unique_pos with (a rem b). now apply rem_bound_pos. apply quot_rem. order. Qed. Lemma rem_mod_nonneg : forall a b, 0<=a -> 0 a rem b == a mod b. Proof. intros. apply mod_unique_pos with (a÷b). now apply rem_bound_pos. apply quot_rem. order. Qed. (** We can use the sign rule to have an relation between divisions. *) Lemma quot_div : forall a b, b~=0 -> a÷b == (sgn a)*(sgn b)*(abs a / abs b). Proof. assert (AUX : forall a b, 0 a÷b == (sgn a)*(sgn b)*(abs a / abs b)). intros a b Hb. rewrite (sgn_pos b), (abs_eq b), mul_1_r by order. destruct (lt_trichotomy 0 a) as [Ha|[Ha|Ha]]. rewrite sgn_pos, abs_eq, mul_1_l, quot_div_nonneg; order. rewrite <- Ha, abs_0, sgn_0, quot_0_l, div_0_l, mul_0_l; order. rewrite sgn_neg, abs_neq, mul_opp_l, mul_1_l, eq_opp_r, <-quot_opp_l by order. apply quot_div_nonneg; trivial. apply opp_nonneg_nonpos; order. (* main *) intros a b Hb. apply neg_pos_cases in Hb. destruct Hb as [Hb|Hb]; [|now apply AUX]. rewrite <- (opp_involutive b) at 1. rewrite quot_opp_r. rewrite AUX, abs_opp, sgn_opp, mul_opp_r, mul_opp_l, opp_involutive. reflexivity. now apply opp_pos_neg. rewrite eq_opp_l, opp_0; order. Qed. Lemma rem_mod : forall a b, b~=0 -> a rem b == (sgn a) * ((abs a) mod (abs b)). Proof. intros a b Hb. rewrite <- rem_abs_r by trivial. assert (Hb' := proj2 (abs_pos b) Hb). destruct (lt_trichotomy 0 a) as [Ha|[Ha|Ha]]. rewrite (abs_eq a), sgn_pos, mul_1_l, rem_mod_nonneg; order. rewrite <- Ha, abs_0, sgn_0, mod_0_l, rem_0_l, mul_0_l; order. rewrite sgn_neg, (abs_neq a), mul_opp_l, mul_1_l, eq_opp_r, <-rem_opp_l by order. apply rem_mod_nonneg; trivial. apply opp_nonneg_nonpos; order. Qed. (** Modulo and remainder are null at the same place, and this correspond to the divisibility relation. *) Lemma mod_divide : forall a b, b~=0 -> (a mod b == 0 <-> (b|a)). Proof. intros a b Hb. split. intros Hab. exists (a/b). rewrite mul_comm. rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl. intros (c,Hc). rewrite Hc. now apply mod_mul. Qed. Lemma rem_divide : forall a b, b~=0 -> (a rem b == 0 <-> (b|a)). Proof. intros a b Hb. split. intros Hab. exists (a÷b). rewrite mul_comm. rewrite (quot_rem a b Hb) at 1. rewrite Hab; now nzsimpl. intros (c,Hc). rewrite Hc. now apply rem_mul. Qed. Lemma rem_mod_eq_0 : forall a b, b~=0 -> (a rem b == 0 <-> a mod b == 0). Proof. intros a b Hb. now rewrite mod_divide, rem_divide. Qed. (** When division is exact, div and quot agree *) Lemma quot_div_exact : forall a b, b~=0 -> (b|a) -> a÷b == a/b. Proof. intros a b Hb H. apply mul_cancel_l with b; trivial. assert (H':=H). apply rem_divide, quot_exact in H; trivial. apply mod_divide, div_exact in H'; trivial. now rewrite <-H,<-H'. Qed. Lemma divide_div_mul_exact : forall a b c, b~=0 -> (b|a) -> (c*a)/b == c*(a/b). Proof. intros a b c Hb H. apply mul_cancel_l with b; trivial. rewrite mul_assoc, mul_shuffle0. assert (H':=H). apply mod_divide, div_exact in H'; trivial. rewrite <- H', (mul_comm a c). symmetry. apply div_exact; trivial. apply mod_divide; trivial. now apply divide_mul_r. Qed. Lemma divide_quot_mul_exact : forall a b c, b~=0 -> (b|a) -> (c*a)÷b == c*(a÷b). Proof. intros a b c Hb H. rewrite 2 quot_div_exact; trivial. apply divide_div_mul_exact; trivial. now apply divide_mul_r. Qed. (** Gcd of divided elements, for exact divisions *) Lemma gcd_div_factor : forall a b c, 0 (c|a) -> (c|b) -> gcd (a/c) (b/c) == (gcd a b)/c. Proof. intros a b c Hc Ha Hb. apply mul_cancel_l with c; try order. assert (H:=gcd_greatest _ _ _ Ha Hb). apply mod_divide, div_exact in H; try order. rewrite <- H. rewrite <- gcd_mul_mono_l_nonneg; try order. f_equiv; symmetry; apply div_exact; try order; apply mod_divide; trivial; try order. Qed. Lemma gcd_quot_factor : forall a b c, 0 (c|a) -> (c|b) -> gcd (a÷c) (b÷c) == (gcd a b)÷c. Proof. intros a b c Hc Ha Hb. rewrite !quot_div_exact; trivial; try order. now apply gcd_div_factor. now apply gcd_greatest. Qed. Lemma gcd_div_gcd : forall a b g, g~=0 -> g == gcd a b -> gcd (a/g) (b/g) == 1. Proof. intros a b g NZ EQ. rewrite gcd_div_factor. now rewrite <- EQ, div_same. generalize (gcd_nonneg a b); order. rewrite EQ; apply gcd_divide_l. rewrite EQ; apply gcd_divide_r. Qed. Lemma gcd_quot_gcd : forall a b g, g~=0 -> g == gcd a b -> gcd (a÷g) (b÷g) == 1. Proof. intros a b g NZ EQ. rewrite !quot_div_exact; trivial. now apply gcd_div_gcd. rewrite EQ; apply gcd_divide_r. rewrite EQ; apply gcd_divide_l. Qed. (** The following equality is crucial for Euclid algorithm *) Lemma gcd_mod : forall a b, b~=0 -> gcd (a mod b) b == gcd b a. Proof. intros a b Hb. rewrite mod_eq; trivial. rewrite <- add_opp_r, mul_comm, <- mul_opp_l. rewrite (gcd_comm _ b). apply gcd_add_mult_diag_r. Qed. Lemma gcd_rem : forall a b, b~=0 -> gcd (a rem b) b == gcd b a. Proof. intros a b Hb. rewrite rem_eq; trivial. rewrite <- add_opp_r, mul_comm, <- mul_opp_l. rewrite (gcd_comm _ b). apply gcd_add_mult_diag_r. Qed. (** We now define lcm thanks to gcd: lcm a b = a * (b / gcd a b) = (a / gcd a b) * b = (a*b) / gcd a b We had an abs in order to have an always-nonnegative lcm, in the spirit of gcd. Nota: [lcm 0 0] should be 0, which isn't garantee with the third equation above. *) Definition lcm a b := abs (a*(b/gcd a b)). Instance lcm_wd : Proper (eq==>eq==>eq) lcm. Proof. unfold lcm. solve_proper. Qed. Lemma lcm_equiv1 : forall a b, gcd a b ~= 0 -> a * (b / gcd a b) == (a*b)/gcd a b. Proof. intros a b H. rewrite divide_div_mul_exact; try easy. apply gcd_divide_r. Qed. Lemma lcm_equiv2 : forall a b, gcd a b ~= 0 -> (a / gcd a b) * b == (a*b)/gcd a b. Proof. intros a b H. rewrite 2 (mul_comm _ b). rewrite divide_div_mul_exact; try easy. apply gcd_divide_l. Qed. Lemma gcd_div_swap : forall a b, (a / gcd a b) * b == a * (b / gcd a b). Proof. intros a b. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ]. apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ, EQ'. now nzsimpl. now rewrite lcm_equiv1, <-lcm_equiv2. Qed. Lemma divide_lcm_l : forall a b, (a | lcm a b). Proof. unfold lcm. intros a b. apply divide_abs_r, divide_factor_l. Qed. Lemma divide_lcm_r : forall a b, (b | lcm a b). Proof. unfold lcm. intros a b. apply divide_abs_r. rewrite <- gcd_div_swap. apply divide_factor_r. Qed. Lemma divide_div : forall a b c, a~=0 -> (a|b) -> (b|c) -> (b/a|c/a). Proof. intros a b c Ha Hb (c',Hc). exists c'. now rewrite <- divide_div_mul_exact, <- Hc. Qed. Lemma lcm_least : forall a b c, (a | c) -> (b | c) -> (lcm a b | c). Proof. intros a b c Ha Hb. unfold lcm. apply divide_abs_l. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ]. apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ in *. now nzsimpl. assert (Ga := gcd_divide_l a b). assert (Gb := gcd_divide_r a b). set (g:=gcd a b) in *. assert (Ha' := divide_div g a c NEQ Ga Ha). assert (Hb' := divide_div g b c NEQ Gb Hb). destruct Ha' as (a',Ha'). rewrite Ha', mul_comm in Hb'. apply gauss in Hb'; [|apply gcd_div_gcd; unfold g; trivial using gcd_comm]. destruct Hb' as (b',Hb'). exists b'. rewrite mul_shuffle3, <- Hb'. rewrite (proj2 (div_exact c g NEQ)). rewrite Ha', mul_shuffle3, (mul_comm a a'). f_equiv. symmetry. apply div_exact; trivial. apply mod_divide; trivial. apply mod_divide; trivial. transitivity a; trivial. Qed. Lemma lcm_nonneg : forall a b, 0 <= lcm a b. Proof. intros a b. unfold lcm. apply abs_nonneg. Qed. Lemma lcm_comm : forall a b, lcm a b == lcm b a. Proof. intros a b. unfold lcm. rewrite (gcd_comm b), (mul_comm b). now rewrite <- gcd_div_swap. Qed. Lemma lcm_divide_iff : forall n m p, (lcm n m | p) <-> (n | p) /\ (m | p). Proof. intros. split. split. transitivity (lcm n m); trivial using divide_lcm_l. transitivity (lcm n m); trivial using divide_lcm_r. intros (H,H'). now apply lcm_least. Qed. Lemma lcm_unique : forall n m p, 0<=p -> (n|p) -> (m|p) -> (forall q, (n|q) -> (m|q) -> (p|q)) -> lcm n m == p. Proof. intros n m p Hp Hn Hm H. apply divide_antisym_nonneg; trivial. apply lcm_nonneg. now apply lcm_least. apply H. apply divide_lcm_l. apply divide_lcm_r. Qed. Lemma lcm_unique_alt : forall n m p, 0<=p -> (forall q, (p|q) <-> (n|q) /\ (m|q)) -> lcm n m == p. Proof. intros n m p Hp H. apply lcm_unique; trivial. apply H, divide_refl. apply H, divide_refl. intros. apply H. now split. Qed. Lemma lcm_assoc : forall n m p, lcm n (lcm m p) == lcm (lcm n m) p. Proof. intros. apply lcm_unique_alt; try apply lcm_nonneg. intros. now rewrite !lcm_divide_iff, and_assoc. Qed. Lemma lcm_0_l : forall n, lcm 0 n == 0. Proof. intros. apply lcm_unique; trivial. order. apply divide_refl. apply divide_0_r. Qed. Lemma lcm_0_r : forall n, lcm n 0 == 0. Proof. intros. now rewrite lcm_comm, lcm_0_l. Qed. Lemma lcm_1_l_nonneg : forall n, 0<=n -> lcm 1 n == n. Proof. intros. apply lcm_unique; trivial using divide_1_l, le_0_1, divide_refl. Qed. Lemma lcm_1_r_nonneg : forall n, 0<=n -> lcm n 1 == n. Proof. intros. now rewrite lcm_comm, lcm_1_l_nonneg. Qed. Lemma lcm_diag_nonneg : forall n, 0<=n -> lcm n n == n. Proof. intros. apply lcm_unique; trivial using divide_refl. Qed. Lemma lcm_eq_0 : forall n m, lcm n m == 0 <-> n == 0 \/ m == 0. Proof. intros. split. intros EQ. apply eq_mul_0. apply divide_0_l. rewrite <- EQ. apply lcm_least. apply divide_factor_l. apply divide_factor_r. destruct 1 as [EQ|EQ]; rewrite EQ. apply lcm_0_l. apply lcm_0_r. Qed. Lemma divide_lcm_eq_r : forall n m, 0<=m -> (n|m) -> lcm n m == m. Proof. intros n m Hm H. apply lcm_unique_alt; trivial. intros q. split. split; trivial. now transitivity m. now destruct 1. Qed. Lemma divide_lcm_iff : forall n m, 0<=m -> ((n|m) <-> lcm n m == m). Proof. intros n m Hn. split. now apply divide_lcm_eq_r. intros EQ. rewrite <- EQ. apply divide_lcm_l. Qed. Lemma lcm_opp_l : forall n m, lcm (-n) m == lcm n m. Proof. intros. apply lcm_unique_alt; try apply lcm_nonneg. intros. rewrite divide_opp_l. apply lcm_divide_iff. Qed. Lemma lcm_opp_r : forall n m, lcm n (-m) == lcm n m. Proof. intros. now rewrite lcm_comm, lcm_opp_l, lcm_comm. Qed. Lemma lcm_abs_l : forall n m, lcm (abs n) m == lcm n m. Proof. intros. destruct (abs_eq_or_opp n) as [H|H]; rewrite H. easy. apply lcm_opp_l. Qed. Lemma lcm_abs_r : forall n m, lcm n (abs m) == lcm n m. Proof. intros. now rewrite lcm_comm, lcm_abs_l, lcm_comm. Qed. Lemma lcm_1_l : forall n, lcm 1 n == abs n. Proof. intros. rewrite <- lcm_abs_r. apply lcm_1_l_nonneg, abs_nonneg. Qed. Lemma lcm_1_r : forall n, lcm n 1 == abs n. Proof. intros. now rewrite lcm_comm, lcm_1_l. Qed. Lemma lcm_diag : forall n, lcm n n == abs n. Proof. intros. rewrite <- lcm_abs_l, <- lcm_abs_r. apply lcm_diag_nonneg, abs_nonneg. Qed. Lemma lcm_mul_mono_l : forall n m p, lcm (p * n) (p * m) == abs p * lcm n m. Proof. intros n m p. destruct (eq_decidable p 0) as [Hp|Hp]. rewrite Hp. nzsimpl. rewrite lcm_0_l, abs_0. now nzsimpl. destruct (eq_decidable (gcd n m) 0) as [Hg|Hg]. apply gcd_eq_0 in Hg. destruct Hg as (Hn,Hm); rewrite Hn, Hm. nzsimpl. rewrite lcm_0_l. now nzsimpl. unfold lcm. rewrite gcd_mul_mono_l. rewrite !abs_mul, mul_assoc. f_equiv. rewrite <- (abs_sgn p) at 1. rewrite <- mul_assoc. rewrite div_mul_cancel_l; trivial. rewrite divide_div_mul_exact; trivial. rewrite abs_mul. rewrite <- (sgn_abs (sgn p)), sgn_sgn. destruct (sgn_spec p) as [(_,EQ)|[(EQ,_)|(_,EQ)]]. rewrite EQ. now nzsimpl. order. rewrite EQ. rewrite mul_opp_l, mul_opp_r, opp_involutive. now nzsimpl. apply gcd_divide_r. contradict Hp. now apply abs_0_iff. Qed. Lemma lcm_mul_mono_l_nonneg : forall n m p, 0<=p -> lcm (p*n) (p*m) == p * lcm n m. Proof. intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_l. Qed. Lemma lcm_mul_mono_r : forall n m p, lcm (n * p) (m * p) == lcm n m * abs p. Proof. intros n m p. now rewrite !(mul_comm _ p), lcm_mul_mono_l, mul_comm. Qed. Lemma lcm_mul_mono_r_nonneg : forall n m p, 0<=p -> lcm (n*p) (m*p) == lcm n m * p. Proof. intros. rewrite <- (abs_eq p) at 3; trivial. apply lcm_mul_mono_r. Qed. Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 -> (gcd n m == 1 <-> lcm n m == abs (n*m)). Proof. intros n m Hn Hm. split; intros H. unfold lcm. rewrite H. now rewrite div_1_r. unfold lcm in *. rewrite !abs_mul in H. apply mul_cancel_l in H; [|now rewrite abs_0_iff]. assert (H' := gcd_divide_r n m). assert (Hg : gcd n m ~= 0) by (red; rewrite gcd_eq_0; destruct 1; order). apply mod_divide in H'; trivial. apply div_exact in H'; trivial. assert (m / gcd n m ~=0) by (contradict Hm; rewrite H', Hm; now nzsimpl). rewrite <- (mul_1_l (abs (_/_))) in H. rewrite H' in H at 3. rewrite abs_mul in H. apply mul_cancel_r in H; [|now rewrite abs_0_iff]. rewrite abs_eq in H. order. apply gcd_nonneg. Qed. End ZLcmProp.