(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* a mod b == a - b*(a/b). Proof. intros. rewrite <- add_move_l. symmetry. now apply div_mod. Qed. (** We have a general bound for absolute values *) Lemma mod_bound_abs : forall a b, b~=0 -> abs (a mod b) < abs b. Proof. intros. destruct (abs_spec b) as [(LE,EQ)|(LE,EQ)]; rewrite EQ. destruct (mod_pos_bound a b). order. now rewrite abs_eq. destruct (mod_neg_bound a b). order. rewrite abs_neq; trivial. now rewrite <- opp_lt_mono. Qed. (** Uniqueness theorems *) Theorem div_mod_unique : forall b q1 q2 r1 r2 : t, (0<=r1 (0<=r2 b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2. Proof. intros b q1 q2 r1 r2 Hr1 Hr2 EQ. destruct Hr1; destruct Hr2; try (intuition; order). apply div_mod_unique with b; trivial. rewrite <- (opp_inj_wd r1 r2). apply div_mod_unique with (-b); trivial. rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. rewrite <- opp_lt_mono, opp_nonneg_nonpos; tauto. now rewrite 2 mul_opp_l, <- 2 opp_add_distr, opp_inj_wd. Qed. Theorem div_unique: forall a b q r, (0<=r a == b*q + r -> q == a/b. Proof. intros a b q r Hr EQ. assert (Hb : b~=0) by (destruct Hr; intuition; order). destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound]; intuition order. now rewrite <- div_mod. Qed. Theorem div_unique_pos: forall a b q r, 0<=r a == b*q + r -> q == a/b. Proof. intros; apply div_unique with r; auto. Qed. Theorem div_unique_neg: forall a b q r, b a == b*q + r -> q == a/b. Proof. intros; apply div_unique with r; auto. Qed. Theorem mod_unique: forall a b q r, (0<=r a == b*q + r -> r == a mod b. Proof. intros a b q r Hr EQ. assert (Hb : b~=0) by (destruct Hr; intuition; order). destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. destruct Hr; [left; apply mod_pos_bound|right; apply mod_neg_bound]; intuition order. now rewrite <- div_mod. Qed. Theorem mod_unique_pos: forall a b q r, 0<=r a == b*q + r -> r == a mod b. Proof. intros; apply mod_unique with q; auto. Qed. Theorem mod_unique_neg: forall a b q r, b a == b*q + r -> r == a mod b. Proof. intros; apply mod_unique with q; auto. Qed. (** Sign rules *) Ltac pos_or_neg a := let LT := fresh "LT" in let LE := fresh "LE" in destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT]. Fact mod_bound_or : forall a b, b~=0 -> 0<=a mod b 0 <= -(a mod b) < -b \/ -b < -(a mod b) <= 0. Proof. intros. destruct (lt_ge_cases 0 b); [right|left]. rewrite <- opp_lt_mono, opp_nonpos_nonneg. destruct (mod_pos_bound a b); intuition; order. rewrite <- opp_lt_mono, opp_nonneg_nonpos. destruct (mod_neg_bound a b); intuition; order. Qed. Lemma div_opp_opp : forall a b, b~=0 -> -a/-b == a/b. Proof. intros. symmetry. apply div_unique with (- (a mod b)). now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. Lemma mod_opp_opp : forall a b, b~=0 -> (-a) mod (-b) == - (a mod b). Proof. intros. symmetry. apply mod_unique with (a/b). now apply opp_mod_bound_or. rewrite mul_opp_l, <- opp_add_distr, <- div_mod; order. Qed. (** With the current conventions, the other sign rules are rather complex. *) Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 -> (-a)/b == -(a/b). Proof. intros a b Hb H. symmetry. apply div_unique with 0. destruct (lt_ge_cases 0 b); [left|right]; intuition; order. rewrite <- opp_0, <- H. rewrite mul_opp_r, <- opp_add_distr, <- div_mod; order. Qed. Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a)/b == -(a/b)-1. Proof. intros a b Hb H. symmetry. apply div_unique with (b - a mod b). destruct (lt_ge_cases 0 b); [left|right]. rewrite le_0_sub. rewrite <- (sub_0_r b) at 5. rewrite <- sub_lt_mono_l. destruct (mod_pos_bound a b); intuition; order. rewrite le_sub_0. rewrite <- (sub_0_r b) at 1. rewrite <- sub_lt_mono_l. destruct (mod_neg_bound a b); intuition; order. rewrite <- (add_opp_r b), mul_sub_distr_l, mul_1_r, sub_add_simpl_r_l. rewrite mul_opp_r, <-opp_add_distr, <-div_mod; order. Qed. Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 -> (-a) mod b == 0. Proof. intros a b Hb H. symmetry. apply mod_unique with (-(a/b)). destruct (lt_ge_cases 0 b); [left|right]; intuition; order. rewrite <- opp_0, <- H. rewrite mul_opp_r, <- opp_add_distr, <- div_mod; order. Qed. Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a) mod b == b - a mod b. Proof. intros a b Hb H. symmetry. apply mod_unique with (-(a/b)-1). destruct (lt_ge_cases 0 b); [left|right]. rewrite le_0_sub. rewrite <- (sub_0_r b) at 5. rewrite <- sub_lt_mono_l. destruct (mod_pos_bound a b); intuition; order. rewrite le_sub_0. rewrite <- (sub_0_r b) at 1. rewrite <- sub_lt_mono_l. destruct (mod_neg_bound a b); intuition; order. rewrite <- (add_opp_r b), mul_sub_distr_l, mul_1_r, sub_add_simpl_r_l. rewrite mul_opp_r, <-opp_add_distr, <-div_mod; order. Qed. Lemma div_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a/(-b) == -(a/b). Proof. intros. rewrite <- (opp_involutive a) at 1. rewrite div_opp_opp; auto using div_opp_l_z. Qed. Lemma div_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a/(-b) == -(a/b)-1. Proof. intros. rewrite <- (opp_involutive a) at 1. rewrite div_opp_opp; auto using div_opp_l_nz. Qed. Lemma mod_opp_r_z : forall a b, b~=0 -> a mod b == 0 -> a mod (-b) == 0. Proof. intros. rewrite <- (opp_involutive a) at 1. now rewrite mod_opp_opp, mod_opp_l_z, opp_0. Qed. Lemma mod_opp_r_nz : forall a b, b~=0 -> a mod b ~= 0 -> a mod (-b) == (a mod b) - b. Proof. intros. rewrite <- (opp_involutive a) at 1. rewrite mod_opp_opp, mod_opp_l_nz by trivial. now rewrite opp_sub_distr, add_comm, add_opp_r. Qed. (** The sign of [a mod b] is the one of [b] (when it isn't null) *) Lemma mod_sign_nz : forall a b, b~=0 -> a mod b ~= 0 -> sgn (a mod b) == sgn b. Proof. intros a b Hb H. destruct (lt_ge_cases 0 b) as [Hb'|Hb']. destruct (mod_pos_bound a b Hb'). rewrite 2 sgn_pos; order. destruct (mod_neg_bound a b). order. rewrite 2 sgn_neg; order. Qed. Lemma mod_sign : forall a b, b~=0 -> sgn (a mod b) ~= -sgn b. Proof. intros a b Hb H. destruct (eq_decidable (a mod b) 0) as [EQ|NEQ]. apply Hb, sgn_null_iff, opp_inj. now rewrite <- H, opp_0, EQ, sgn_0. apply Hb, sgn_null_iff. apply eq_mul_0_l with 2; try order'. nzsimpl'. apply add_move_0_l. rewrite <- H. symmetry. now apply mod_sign_nz. Qed. Lemma mod_sign_mul : forall a b, b~=0 -> 0 <= (a mod b) * b. Proof. intros. destruct (lt_ge_cases 0 b). apply mul_nonneg_nonneg; destruct (mod_pos_bound a b); order. apply mul_nonpos_nonpos; destruct (mod_neg_bound a b); order. Qed. (** A division by itself returns 1 *) Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. intros. pos_or_neg a. apply div_same; order. rewrite <- div_opp_opp by trivial. now apply div_same. Qed. Lemma mod_same : forall a, a~=0 -> a mod a == 0. Proof. intros. rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag. Qed. (** A division of a small number by a bigger one yields zero. *) Theorem div_small: forall a b, 0<=a a/b == 0. Proof. exact div_small. Qed. (** Same situation, in term of modulo: *) Theorem mod_small: forall a b, 0<=a a mod b == a. Proof. exact mod_small. Qed. (** * Basic values of divisions and modulo. *) Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. intros. pos_or_neg a. apply div_0_l; order. rewrite <- div_opp_opp, opp_0 by trivial. now apply div_0_l. Qed. Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. Proof. intros; rewrite mod_eq, div_0_l; now nzsimpl. Qed. Lemma div_1_r: forall a, a/1 == a. Proof. intros. symmetry. apply div_unique with 0. left. split; order || apply lt_0_1. now nzsimpl. Qed. Lemma mod_1_r: forall a, a mod 1 == 0. Proof. intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag. intro EQ; symmetry in EQ; revert EQ; apply lt_neq; apply lt_0_1. Qed. Lemma div_1_l: forall a, 1 1/a == 0. Proof. exact div_1_l. Qed. Lemma mod_1_l: forall a, 1 1 mod a == 1. Proof. exact mod_1_l. Qed. Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. Proof. intros. symmetry. apply div_unique with 0. destruct (lt_ge_cases 0 b); [left|right]; split; order. nzsimpl; apply mul_comm. Qed. Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. Proof. intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag. Qed. Theorem div_unique_exact a b q: b~=0 -> a == b*q -> q == a/b. Proof. intros Hb H. rewrite H, mul_comm. symmetry. now apply div_mul. Qed. (** * Order results about mod and div *) (** A modulo cannot grow beyond its starting point. *) Theorem mod_le: forall a b, 0<=a -> 0 a mod b <= a. Proof. exact mod_le. Qed. Theorem div_pos : forall a b, 0<=a -> 0 0<= a/b. Proof. exact div_pos. Qed. Lemma div_str_pos : forall a b, 0 0 < a/b. Proof. exact div_str_pos. Qed. Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a (a mod b == a <-> 0<=a 1 a/b < a. Proof. exact div_lt. Qed. (** [le] is compatible with a positive division. *) Lemma div_le_mono : forall a b c, 0 a<=b -> a/c <= b/c. Proof. intros a b c Hc Hab. rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ]; [|rewrite EQ; order]. rewrite <- lt_succ_r. rewrite (mul_lt_mono_pos_l c) by order. nzsimpl. rewrite (add_lt_mono_r _ _ (a mod c)). rewrite <- div_mod by order. apply lt_le_trans with b; trivial. rewrite (div_mod b c) at 1 by order. rewrite <- add_assoc, <- add_le_mono_l. apply le_trans with (c+0). nzsimpl; destruct (mod_pos_bound b c); order. rewrite <- add_le_mono_l. destruct (mod_pos_bound a c); order. Qed. (** In this convention, [div] performs Rounding-Toward-Bottom. Since we cannot speak of rational values here, we express this fact by multiplying back by [b], and this leads to separates statements according to the sign of [b]. First, [a/b] is below the exact fraction ... *) Lemma mul_div_le : forall a b, 0 b*(a/b) <= a. Proof. intros. rewrite (div_mod a b) at 2; try order. rewrite <- (add_0_r (b*(a/b))) at 1. rewrite <- add_le_mono_l. now destruct (mod_pos_bound a b). Qed. Lemma mul_div_ge : forall a b, b<0 -> a <= b*(a/b). Proof. intros. rewrite <- div_opp_opp, opp_le_mono, <-mul_opp_l by order. apply mul_div_le. now rewrite opp_pos_neg. Qed. (** ... and moreover it is the larger such integer, since [S(a/b)] is strictly above the exact fraction. *) Lemma mul_succ_div_gt: forall a b, 0 a < b*(S (a/b)). Proof. intros. nzsimpl. rewrite (div_mod a b) at 1; try order. rewrite <- add_lt_mono_l. destruct (mod_pos_bound a b); order. Qed. Lemma mul_succ_div_lt: forall a b, b<0 -> b*(S (a/b)) < a. Proof. intros. rewrite <- div_opp_opp, opp_lt_mono, <-mul_opp_l by order. apply mul_succ_div_gt. now rewrite opp_pos_neg. Qed. (** NB: The four previous properties could be used as specifications for [div]. *) (** Inequality [mul_div_le] is exact iff the modulo is zero. *) Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). Proof. intros. rewrite (div_mod a b) at 1; try order. rewrite <- (add_0_r (b*(a/b))) at 2. apply add_cancel_l. Qed. (** Some additional inequalities about div. *) Theorem div_lt_upper_bound: forall a b q, 0 a < b*q -> a/b < q. Proof. intros. rewrite (mul_lt_mono_pos_l b) by trivial. apply le_lt_trans with a; trivial. now apply mul_div_le. Qed. Theorem div_le_upper_bound: forall a b q, 0 a <= b*q -> a/b <= q. Proof. intros. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. Theorem div_le_lower_bound: forall a b q, 0 b*q <= a -> q <= a/b. Proof. intros. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. (** A division respects opposite monotonicity for the divisor *) Lemma div_le_compat_l: forall p q r, 0<=p -> 0 p/r <= p/q. Proof. exact div_le_compat_l. Qed. (** * Relations between usual operations and mod and div *) Lemma mod_add : forall a b c, c~=0 -> (a + b * c) mod c == a mod c. Proof. intros. symmetry. apply mod_unique with (a/c+b); trivial. now apply mod_bound_or. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. now rewrite mul_comm. Qed. Lemma div_add : forall a b c, c~=0 -> (a + b * c) / c == a / c + b. Proof. intros. apply (mul_cancel_l _ _ c); try order. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. now rewrite mul_comm. Qed. Lemma div_add_l: forall a b c, b~=0 -> (a * b + c) / b == a + c / b. Proof. intros a b c. rewrite (add_comm _ c), (add_comm a). now apply div_add. Qed. (** Cancellations. *) Lemma div_mul_cancel_r : forall a b c, b~=0 -> c~=0 -> (a*c)/(b*c) == a/b. Proof. intros. symmetry. apply div_unique with ((a mod b)*c). (* ineqs *) destruct (lt_ge_cases 0 c). rewrite <-(mul_0_l c), <-2mul_lt_mono_pos_r, <-2mul_le_mono_pos_r by trivial. now apply mod_bound_or. rewrite <-(mul_0_l c), <-2mul_lt_mono_neg_r, <-2mul_le_mono_neg_r by order. destruct (mod_bound_or a b); tauto. (* equation *) rewrite (div_mod a b) at 1 by order. rewrite mul_add_distr_r. rewrite add_cancel_r. rewrite <- 2 mul_assoc. now rewrite (mul_comm c). Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> c~=0 -> (c*a)/(c*b) == a/b. Proof. intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> c~=0 -> (c*a) mod (c*b) == c * (a mod b). Proof. intros. rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). rewrite <- div_mod. rewrite div_mul_cancel_l by trivial. rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order. apply div_mod; order. rewrite <- neq_mul_0; auto. Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> c~=0 -> (a*c) mod (b*c) == (a mod b) * c. Proof. intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. (** Operations modulo. *) Theorem mod_mod: forall a n, n~=0 -> (a mod n) mod n == a mod n. Proof. intros. rewrite mod_small_iff by trivial. now apply mod_bound_or. Qed. Lemma mul_mod_idemp_l : forall a b n, n~=0 -> ((a mod n)*b) mod n == (a*b) mod n. Proof. intros a b n Hn. symmetry. rewrite (div_mod a n) at 1 by order. rewrite add_comm, (mul_comm n), (mul_comm _ b). rewrite mul_add_distr_l, mul_assoc. intros. rewrite mod_add by trivial. now rewrite mul_comm. Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r. Qed. Lemma add_mod_idemp_l : forall a b n, n~=0 -> ((a mod n)+b) mod n == (a+b) mod n. Proof. intros a b n Hn. symmetry. rewrite (div_mod a n) at 1 by order. rewrite <- add_assoc, add_comm, mul_comm. intros. now rewrite mod_add. Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. intros. rewrite !(add_comm a). now apply add_mod_idemp_l. Qed. Theorem add_mod: forall a b n, n~=0 -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. intros. now rewrite add_mod_idemp_l, add_mod_idemp_r. Qed. (** With the current convention, the following result isn't always true with a negative last divisor. For instance [ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ], or [ 5/2/(-2) = -1 <> -2 = 5 / (2*-2) ]. *) Lemma div_div : forall a b c, b~=0 -> 0 (a/b)/c == a/(b*c). Proof. intros a b c Hb Hc. apply div_unique with (b*((a/b) mod c) + a mod b). (* begin 0<= ... 0 a mod (b*c) == a mod b + b*((a/b) mod c). Proof. intros a b c Hb Hc. apply add_cancel_l with (b*c*(a/(b*c))). rewrite <- div_mod by (apply neq_mul_0; split; order). rewrite <- div_div by trivial. rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l. rewrite <- div_mod by order. apply div_mod; order. Qed. (** A last inequality: *) Theorem div_mul_le: forall a b c, 0<=a -> 0 0<=c -> c*(a/b) <= (c*a)/b. Proof. exact div_mul_le. Qed. End ZDivProp.