(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0 -> exists r q, a = b*q+r /\ 0 <= r < |b| ] The outcome of the modulo function is hence always positive. This corresponds to convention "E" in the following paper: R. Boute, "The Euclidean definition of the functions div and mod", ACM Transactions on Programming Languages and Systems, Vol. 14, No.2, pp. 127-144, April 1992. See files [ZDivTrunc] and [ZDivFloor] for others conventions. We simply extend NZDiv with a bound for modulo that holds regardless of the sign of a and b. This new specification subsume mod_bound_pos, which nonetheless stays there for subtyping. Note also that ZAxiomSig now already contain a div and a modulo (that follow the Floor convention). We just ignore them here. *) Module Type EuclidSpec (Import A : ZAxiomsSig')(Import B : DivMod A). Axiom mod_always_pos : forall a b, b ~= 0 -> 0 <= B.modulo a b < abs b. End EuclidSpec. Module Type ZEuclid (Z:ZAxiomsSig) := NZDiv.NZDiv Z <+ EuclidSpec Z. Module ZEuclidProp (Import A : ZAxiomsSig') (Import B : ZMulOrderProp A) (Import C : ZSgnAbsProp A B) (Import D : ZEuclid A). (** We put notations in a scope, to avoid warnings about redefinitions of notations *) Infix "/" := D.div : euclid. Infix "mod" := D.modulo : euclid. Local Open Scope euclid. Module Import Private_NZDiv := Nop <+ NZDivProp A D B. (** Another formulation of the main equation *) Lemma mod_eq : forall a b, b~=0 -> a mod b == a - b*(a/b). Proof. intros. rewrite <- add_move_l. symmetry. now apply div_mod. Qed. Ltac pos_or_neg a := let LT := fresh "LT" in let LE := fresh "LE" in destruct (le_gt_cases 0 a) as [LE|LT]; [|rewrite <- opp_pos_neg in LT]. (** Uniqueness theorems *) Theorem div_mod_unique : forall b q1 q2 r1 r2 : t, 0<=r1 0<=r2 b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2. Proof. intros b q1 q2 r1 r2 Hr1 Hr2 EQ. pos_or_neg b. rewrite abs_eq in * by trivial. apply div_mod_unique with b; trivial. rewrite abs_neq' in * by auto using lt_le_incl. rewrite eq_sym_iff. apply div_mod_unique with (-b); trivial. rewrite 2 mul_opp_l. rewrite add_move_l, sub_opp_r. rewrite <-add_assoc. symmetry. rewrite add_move_l, sub_opp_r. now rewrite (add_comm r2), (add_comm r1). Qed. Theorem div_unique: forall a b q r, 0<=r a == b*q + r -> q == a/b. Proof. intros a b q r Hr EQ. assert (Hb : b~=0). pos_or_neg b. rewrite abs_eq in Hr; intuition; order. rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order. destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. now apply mod_always_pos. now rewrite <- div_mod. Qed. Theorem mod_unique: forall a b q r, 0<=r a == b*q + r -> r == a mod b. Proof. intros a b q r Hr EQ. assert (Hb : b~=0). pos_or_neg b. rewrite abs_eq in Hr; intuition; order. rewrite <- opp_0, eq_opp_r. rewrite abs_neq' in Hr; intuition; order. destruct (div_mod_unique b q (a/b) r (a mod b)); trivial. now apply mod_always_pos. now rewrite <- div_mod. Qed. (** Sign rules *) Lemma div_opp_r : forall a b, b~=0 -> a/(-b) == -(a/b). Proof. intros. symmetry. apply div_unique with (a mod b). rewrite abs_opp; now apply mod_always_pos. rewrite mul_opp_opp; now apply div_mod. Qed. Lemma mod_opp_r : forall a b, b~=0 -> a mod (-b) == a mod b. Proof. intros. symmetry. apply mod_unique with (-(a/b)). rewrite abs_opp; now apply mod_always_pos. rewrite mul_opp_opp; now apply div_mod. Qed. Lemma div_opp_l_z : forall a b, b~=0 -> a mod b == 0 -> (-a)/b == -(a/b). Proof. intros a b Hb Hab. symmetry. apply div_unique with (-(a mod b)). rewrite Hab, opp_0. split; [order|]. pos_or_neg b; [rewrite abs_eq | rewrite abs_neq']; order. now rewrite mul_opp_r, <-opp_add_distr, <-div_mod. Qed. Lemma div_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a)/b == -(a/b)-sgn b. Proof. intros a b Hb Hab. symmetry. apply div_unique with (abs b -(a mod b)). rewrite lt_sub_lt_add_l. rewrite <- le_add_le_sub_l. nzsimpl. rewrite <- (add_0_l (abs b)) at 2. rewrite <- add_lt_mono_r. destruct (mod_always_pos a b); intuition order. rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r. rewrite sgn_abs. rewrite add_shuffle2, add_opp_diag_l; nzsimpl. rewrite <-opp_add_distr, <-div_mod; order. Qed. Lemma mod_opp_l_z : forall a b, b~=0 -> a mod b == 0 -> (-a) mod b == 0. Proof. intros a b Hb Hab. symmetry. apply mod_unique with (-(a/b)). split; [order|now rewrite abs_pos]. now rewrite <-opp_0, <-Hab, mul_opp_r, <-opp_add_distr, <-div_mod. Qed. Lemma mod_opp_l_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a) mod b == abs b - (a mod b). Proof. intros a b Hb Hab. symmetry. apply mod_unique with (-(a/b)-sgn b). rewrite lt_sub_lt_add_l. rewrite <- le_add_le_sub_l. nzsimpl. rewrite <- (add_0_l (abs b)) at 2. rewrite <- add_lt_mono_r. destruct (mod_always_pos a b); intuition order. rewrite <- 2 add_opp_r, mul_add_distr_l, 2 mul_opp_r. rewrite sgn_abs. rewrite add_shuffle2, add_opp_diag_l; nzsimpl. rewrite <-opp_add_distr, <-div_mod; order. Qed. Lemma div_opp_opp_z : forall a b, b~=0 -> a mod b == 0 -> (-a)/(-b) == a/b. Proof. intros. now rewrite div_opp_r, div_opp_l_z, opp_involutive. Qed. Lemma div_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a)/(-b) == a/b + sgn(b). Proof. intros. rewrite div_opp_r, div_opp_l_nz by trivial. now rewrite opp_sub_distr, opp_involutive. Qed. Lemma mod_opp_opp_z : forall a b, b~=0 -> a mod b == 0 -> (-a) mod (-b) == 0. Proof. intros. now rewrite mod_opp_r, mod_opp_l_z. Qed. Lemma mod_opp_opp_nz : forall a b, b~=0 -> a mod b ~= 0 -> (-a) mod (-b) == abs b - a mod b. Proof. intros. now rewrite mod_opp_r, mod_opp_l_nz. Qed. (** A division by itself returns 1 *) Lemma div_same : forall a, a~=0 -> a/a == 1. Proof. intros. symmetry. apply div_unique with 0. split; [order|now rewrite abs_pos]. now nzsimpl. Qed. Lemma mod_same : forall a, a~=0 -> a mod a == 0. Proof. intros. rewrite mod_eq, div_same by trivial. nzsimpl. apply sub_diag. Qed. (** A division of a small number by a bigger one yields zero. *) Theorem div_small: forall a b, 0<=a a/b == 0. Proof. exact div_small. Qed. (** Same situation, in term of modulo: *) Theorem mod_small: forall a b, 0<=a a mod b == a. Proof. exact mod_small. Qed. (** * Basic values of divisions and modulo. *) Lemma div_0_l: forall a, a~=0 -> 0/a == 0. Proof. intros. pos_or_neg a. apply div_0_l; order. apply opp_inj. rewrite <- div_opp_r, opp_0 by trivial. now apply div_0_l. Qed. Lemma mod_0_l: forall a, a~=0 -> 0 mod a == 0. Proof. intros; rewrite mod_eq, div_0_l; now nzsimpl. Qed. Lemma div_1_r: forall a, a/1 == a. Proof. intros. symmetry. apply div_unique with 0. assert (H:=lt_0_1); rewrite abs_pos; intuition; order. now nzsimpl. Qed. Lemma mod_1_r: forall a, a mod 1 == 0. Proof. intros. rewrite mod_eq, div_1_r; nzsimpl; auto using sub_diag. apply neq_sym, lt_neq; apply lt_0_1. Qed. Lemma div_1_l: forall a, 1 1/a == 0. Proof. exact div_1_l. Qed. Lemma mod_1_l: forall a, 1 1 mod a == 1. Proof. exact mod_1_l. Qed. Lemma div_mul : forall a b, b~=0 -> (a*b)/b == a. Proof. intros. symmetry. apply div_unique with 0. split; [order|now rewrite abs_pos]. nzsimpl; apply mul_comm. Qed. Lemma mod_mul : forall a b, b~=0 -> (a*b) mod b == 0. Proof. intros. rewrite mod_eq, div_mul by trivial. rewrite mul_comm; apply sub_diag. Qed. Theorem div_unique_exact a b q: b~=0 -> a == b*q -> q == a/b. Proof. intros Hb H. rewrite H, mul_comm. symmetry. now apply div_mul. Qed. (** * Order results about mod and div *) (** A modulo cannot grow beyond its starting point. *) Theorem mod_le: forall a b, 0<=a -> b~=0 -> a mod b <= a. Proof. intros. pos_or_neg b. apply mod_le; order. rewrite <- mod_opp_r by trivial. apply mod_le; order. Qed. Theorem div_pos : forall a b, 0<=a -> 0 0<= a/b. Proof. exact div_pos. Qed. Lemma div_str_pos : forall a b, 0 0 < a/b. Proof. exact div_str_pos. Qed. Lemma div_small_iff : forall a b, b~=0 -> (a/b==0 <-> 0<=a (a mod b == a <-> 0<=a 1 a/b < a. Proof. exact div_lt. Qed. (** [le] is compatible with a positive division. *) Lemma div_le_mono : forall a b c, 0 a<=b -> a/c <= b/c. Proof. intros a b c Hc Hab. rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ]; [|rewrite EQ; order]. rewrite <- lt_succ_r. rewrite (mul_lt_mono_pos_l c) by order. nzsimpl. rewrite (add_lt_mono_r _ _ (a mod c)). rewrite <- div_mod by order. apply lt_le_trans with b; trivial. rewrite (div_mod b c) at 1 by order. rewrite <- add_assoc, <- add_le_mono_l. apply le_trans with (c+0). nzsimpl; destruct (mod_always_pos b c); try order. rewrite abs_eq in *; order. rewrite <- add_le_mono_l. destruct (mod_always_pos a c); order. Qed. (** In this convention, [div] performs Rounding-Toward-Bottom when divisor is positive, and Rounding-Toward-Top otherwise. Since we cannot speak of rational values here, we express this fact by multiplying back by [b], and this leads to a nice unique statement. *) Lemma mul_div_le : forall a b, b~=0 -> b*(a/b) <= a. Proof. intros. rewrite (div_mod a b) at 2; trivial. rewrite <- (add_0_r (b*(a/b))) at 1. rewrite <- add_le_mono_l. now destruct (mod_always_pos a b). Qed. (** Giving a reversed bound is slightly more complex *) Lemma mul_succ_div_gt: forall a b, 0 a < b*(S (a/b)). Proof. intros. nzsimpl. rewrite (div_mod a b) at 1; try order. rewrite <- add_lt_mono_l. destruct (mod_always_pos a b). order. rewrite abs_eq in *; order. Qed. Lemma mul_pred_div_gt: forall a b, b<0 -> a < b*(P (a/b)). Proof. intros a b Hb. rewrite mul_pred_r, <- add_opp_r. rewrite (div_mod a b) at 1; try order. rewrite <- add_lt_mono_l. destruct (mod_always_pos a b). order. rewrite <- opp_pos_neg in Hb. rewrite abs_neq' in *; order. Qed. (** NB: The three previous properties could be used as specifications for [div]. *) (** Inequality [mul_div_le] is exact iff the modulo is zero. *) Lemma div_exact : forall a b, b~=0 -> (a == b*(a/b) <-> a mod b == 0). Proof. intros. rewrite (div_mod a b) at 1; try order. rewrite <- (add_0_r (b*(a/b))) at 2. apply add_cancel_l. Qed. (** Some additional inequalities about div. *) Theorem div_lt_upper_bound: forall a b q, 0 a < b*q -> a/b < q. Proof. intros. rewrite (mul_lt_mono_pos_l b) by trivial. apply le_lt_trans with a; trivial. apply mul_div_le; order. Qed. Theorem div_le_upper_bound: forall a b q, 0 a <= b*q -> a/b <= q. Proof. intros. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. Theorem div_le_lower_bound: forall a b q, 0 b*q <= a -> q <= a/b. Proof. intros. rewrite <- (div_mul q b) by order. apply div_le_mono; trivial. now rewrite mul_comm. Qed. (** A division respects opposite monotonicity for the divisor *) Lemma div_le_compat_l: forall p q r, 0<=p -> 0 p/r <= p/q. Proof. exact div_le_compat_l. Qed. (** * Relations between usual operations and mod and div *) Lemma mod_add : forall a b c, c~=0 -> (a + b * c) mod c == a mod c. Proof. intros. symmetry. apply mod_unique with (a/c+b); trivial. now apply mod_always_pos. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. now rewrite mul_comm. Qed. Lemma div_add : forall a b c, c~=0 -> (a + b * c) / c == a / c + b. Proof. intros. apply (mul_cancel_l _ _ c); try order. apply (add_cancel_r _ _ ((a+b*c) mod c)). rewrite <- div_mod, mod_add by order. rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. now rewrite mul_comm. Qed. Lemma div_add_l: forall a b c, b~=0 -> (a * b + c) / b == a + c / b. Proof. intros a b c. rewrite (add_comm _ c), (add_comm a). now apply div_add. Qed. (** Cancellations. *) (** With the current convention, the following isn't always true when [c<0]: [-3*-1 / -2*-1 = 3/2 = 1] while [-3/-2 = 2] *) Lemma div_mul_cancel_r : forall a b c, b~=0 -> 0 (a*c)/(b*c) == a/b. Proof. intros. symmetry. apply div_unique with ((a mod b)*c). (* ineqs *) rewrite abs_mul, (abs_eq c) by order. rewrite <-(mul_0_l c), <-mul_lt_mono_pos_r, <-mul_le_mono_pos_r by trivial. now apply mod_always_pos. (* equation *) rewrite (div_mod a b) at 1 by order. rewrite mul_add_distr_r. rewrite add_cancel_r. rewrite <- 2 mul_assoc. now rewrite (mul_comm c). Qed. Lemma div_mul_cancel_l : forall a b c, b~=0 -> 0 (c*a)/(c*b) == a/b. Proof. intros. rewrite !(mul_comm c); now apply div_mul_cancel_r. Qed. Lemma mul_mod_distr_l: forall a b c, b~=0 -> 0 (c*a) mod (c*b) == c * (a mod b). Proof. intros. rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). rewrite <- div_mod. rewrite div_mul_cancel_l by trivial. rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order. apply div_mod; order. rewrite <- neq_mul_0; intuition; order. Qed. Lemma mul_mod_distr_r: forall a b c, b~=0 -> 0 (a*c) mod (b*c) == (a mod b) * c. Proof. intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. Qed. (** Operations modulo. *) Theorem mod_mod: forall a n, n~=0 -> (a mod n) mod n == a mod n. Proof. intros. rewrite mod_small_iff by trivial. now apply mod_always_pos. Qed. Lemma mul_mod_idemp_l : forall a b n, n~=0 -> ((a mod n)*b) mod n == (a*b) mod n. Proof. intros a b n Hn. symmetry. rewrite (div_mod a n) at 1 by order. rewrite add_comm, (mul_comm n), (mul_comm _ b). rewrite mul_add_distr_l, mul_assoc. rewrite mod_add by trivial. now rewrite mul_comm. Qed. Lemma mul_mod_idemp_r : forall a b n, n~=0 -> (a*(b mod n)) mod n == (a*b) mod n. Proof. intros. rewrite !(mul_comm a). now apply mul_mod_idemp_l. Qed. Theorem mul_mod: forall a b n, n~=0 -> (a * b) mod n == ((a mod n) * (b mod n)) mod n. Proof. intros. now rewrite mul_mod_idemp_l, mul_mod_idemp_r. Qed. Lemma add_mod_idemp_l : forall a b n, n~=0 -> ((a mod n)+b) mod n == (a+b) mod n. Proof. intros a b n Hn. symmetry. rewrite (div_mod a n) at 1 by order. rewrite <- add_assoc, add_comm, mul_comm. now rewrite mod_add. Qed. Lemma add_mod_idemp_r : forall a b n, n~=0 -> (a+(b mod n)) mod n == (a+b) mod n. Proof. intros. rewrite !(add_comm a). now apply add_mod_idemp_l. Qed. Theorem add_mod: forall a b n, n~=0 -> (a+b) mod n == (a mod n + b mod n) mod n. Proof. intros. now rewrite add_mod_idemp_l, add_mod_idemp_r. Qed. (** With the current convention, the following result isn't always true with a negative intermediate divisor. For instance [ 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) ] and [ 3/(-2)/2 = -1 <> 0 = 3 / (-2*2) ]. *) Lemma div_div : forall a b c, 0 c~=0 -> (a/b)/c == a/(b*c). Proof. intros a b c Hb Hc. apply div_unique with (b*((a/b) mod c) + a mod b). (* begin 0<= ... c~=0 -> a mod (b*c) == a mod b + b*((a/b) mod c). Proof. intros a b c Hb Hc. apply add_cancel_l with (b*c*(a/(b*c))). rewrite <- div_mod by (apply neq_mul_0; split; order). rewrite <- div_div by trivial. rewrite add_assoc, add_shuffle0, <- mul_assoc, <- mul_add_distr_l. rewrite <- div_mod by order. apply div_mod; order. Qed. Lemma mod_div: forall a b, b~=0 -> a mod b / b == 0. Proof. intros a b Hb. rewrite div_small_iff by assumption. auto using mod_always_pos. Qed. (** A last inequality: *) Theorem div_mul_le: forall a b c, 0<=a -> 0 0<=c -> c*(a/b) <= (c*a)/b. Proof. exact div_mul_le. Qed. (** mod is related to divisibility *) Lemma mod_divides : forall a b, b~=0 -> (a mod b == 0 <-> (b|a)). Proof. intros a b Hb. split. intros Hab. exists (a/b). rewrite mul_comm. rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl. intros (c,Hc). rewrite Hc. now apply mod_mul. Qed. End ZEuclidProp.