(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* 0<=c<=b -> a^(b-c) == a^b / a^c. Proof. intros a b c Ha (H,H'). rewrite <- (sub_simpl_r b c) at 2. rewrite pow_add_r; trivial. rewrite div_mul. reflexivity. now apply pow_nonzero. now apply le_0_sub. Qed. Lemma pow_div_l : forall a b c, b~=0 -> 0<=c -> a mod b == 0 -> (a/b)^c == a^c / b^c. Proof. intros a b c Hb Hc H. rewrite (div_mod a b Hb) at 2. rewrite H, add_0_r, pow_mul_l, mul_comm, div_mul. reflexivity. now apply pow_nonzero. Qed. (** An injection from bits [true] and [false] to numbers 1 and 0. We declare it as a (local) coercion for shorter statements. *) Definition b2z (b:bool) := if b then 1 else 0. Local Coercion b2z : bool >-> t. Instance b2z_wd : Proper (Logic.eq ==> eq) b2z := _. Lemma exists_div2 a : exists a' (b:bool), a == 2*a' + b. Proof. elim (Even_or_Odd a); [intros (a',H)| intros (a',H)]. exists a'. exists false. now nzsimpl. exists a'. exists true. now simpl. Qed. (** We can compact [testbit_odd_0] [testbit_even_0] [testbit_even_succ] [testbit_odd_succ] in only two lemmas. *) Lemma testbit_0_r a (b:bool) : testbit (2*a+b) 0 = b. Proof. destruct b; simpl; rewrite ?add_0_r. apply testbit_odd_0. apply testbit_even_0. Qed. Lemma testbit_succ_r a (b:bool) n : 0<=n -> testbit (2*a+b) (succ n) = testbit a n. Proof. destruct b; simpl; rewrite ?add_0_r. now apply testbit_odd_succ. now apply testbit_even_succ. Qed. (** Alternative characterisations of [testbit] *) (** This concise equation could have been taken as specification for testbit in the interface, but it would have been hard to implement with little initial knowledge about div and mod *) Lemma testbit_spec' a n : 0<=n -> a.[n] == (a / 2^n) mod 2. Proof. intro Hn. revert a. apply le_ind with (4:=Hn). solve_proper. intros a. nzsimpl. destruct (exists_div2 a) as (a' & b & H). rewrite H at 1. rewrite testbit_0_r. apply mod_unique with a'; trivial. left. destruct b; split; simpl; order'. clear n Hn. intros n Hn IH a. destruct (exists_div2 a) as (a' & b & H). rewrite H at 1. rewrite testbit_succ_r, IH by trivial. f_equiv. rewrite pow_succ_r, <- div_div by order_pos. f_equiv. apply div_unique with b; trivial. left. destruct b; split; simpl; order'. Qed. (** This characterisation that uses only basic operations and power was initially taken as specification for testbit. We describe [a] as having a low part and a high part, with the corresponding bit in the middle. This characterisation is moderatly complex to implement, but also moderately usable... *) Lemma testbit_spec a n : 0<=n -> exists l h, 0<=l<2^n /\ a == l + (a.[n] + 2*h)*2^n. Proof. intro Hn. exists (a mod 2^n). exists (a / 2^n / 2). split. apply mod_pos_bound; order_pos. rewrite add_comm, mul_comm, (add_comm a.[n]). rewrite (div_mod a (2^n)) at 1 by order_nz. do 2 f_equiv. rewrite testbit_spec' by trivial. apply div_mod. order'. Qed. Lemma testbit_true : forall a n, 0<=n -> (a.[n] = true <-> (a / 2^n) mod 2 == 1). Proof. intros a n Hn. rewrite <- testbit_spec' by trivial. destruct a.[n]; split; simpl; now try order'. Qed. Lemma testbit_false : forall a n, 0<=n -> (a.[n] = false <-> (a / 2^n) mod 2 == 0). Proof. intros a n Hn. rewrite <- testbit_spec' by trivial. destruct a.[n]; split; simpl; now try order'. Qed. Lemma testbit_eqb : forall a n, 0<=n -> a.[n] = eqb ((a / 2^n) mod 2) 1. Proof. intros a n Hn. apply eq_true_iff_eq. now rewrite testbit_true, eqb_eq. Qed. (** Results about the injection [b2z] *) Lemma b2z_inj : forall (a0 b0:bool), a0 == b0 -> a0 = b0. Proof. intros [|] [|]; simpl; trivial; order'. Qed. Lemma add_b2z_double_div2 : forall (a0:bool) a, (a0+2*a)/2 == a. Proof. intros a0 a. rewrite mul_comm, div_add by order'. now rewrite div_small, add_0_l by (destruct a0; split; simpl; order'). Qed. Lemma add_b2z_double_bit0 : forall (a0:bool) a, (a0+2*a).[0] = a0. Proof. intros a0 a. apply b2z_inj. rewrite testbit_spec' by order. nzsimpl. rewrite mul_comm, mod_add by order'. now rewrite mod_small by (destruct a0; split; simpl; order'). Qed. Lemma b2z_div2 : forall (a0:bool), a0/2 == 0. Proof. intros a0. rewrite <- (add_b2z_double_div2 a0 0). now nzsimpl. Qed. Lemma b2z_bit0 : forall (a0:bool), a0.[0] = a0. Proof. intros a0. rewrite <- (add_b2z_double_bit0 a0 0) at 2. now nzsimpl. Qed. (** The specification of testbit by low and high parts is complete *) Lemma testbit_unique : forall a n (a0:bool) l h, 0<=l<2^n -> a == l + (a0 + 2*h)*2^n -> a.[n] = a0. Proof. intros a n a0 l h Hl EQ. assert (0<=n). destruct (le_gt_cases 0 n) as [Hn|Hn]; trivial. rewrite pow_neg_r in Hl by trivial. destruct Hl; order. apply b2z_inj. rewrite testbit_spec' by trivial. symmetry. apply mod_unique with h. left; destruct a0; simpl; split; order'. symmetry. apply div_unique with l. now left. now rewrite add_comm, (add_comm _ a0), mul_comm. Qed. (** All bits of number 0 are 0 *) Lemma bits_0 : forall n, 0.[n] = false. Proof. intros n. destruct (le_gt_cases 0 n). apply testbit_false; trivial. nzsimpl; order_nz. now apply testbit_neg_r. Qed. (** For negative numbers, we are actually doing two's complement *) Lemma bits_opp : forall a n, 0<=n -> (-a).[n] = negb (P a).[n]. Proof. intros a n Hn. destruct (testbit_spec (-a) n Hn) as (l & h & Hl & EQ). fold (b2z (-a).[n]) in EQ. apply negb_sym. apply testbit_unique with (2^n-l-1) (-h-1). split. apply lt_succ_r. rewrite sub_1_r, succ_pred. now apply lt_0_sub. apply le_succ_l. rewrite sub_1_r, succ_pred. apply le_sub_le_add_r. rewrite <- (add_0_r (2^n)) at 1. now apply add_le_mono_l. rewrite <- add_sub_swap, sub_1_r. f_equiv. apply opp_inj. rewrite opp_add_distr, opp_sub_distr. rewrite (add_comm _ l), <- add_assoc. rewrite EQ at 1. apply add_cancel_l. rewrite <- opp_add_distr. rewrite <- (mul_1_l (2^n)) at 2. rewrite <- mul_add_distr_r. rewrite <- mul_opp_l. f_equiv. rewrite !opp_add_distr. rewrite <- mul_opp_r. rewrite opp_sub_distr, opp_involutive. rewrite (add_comm h). rewrite mul_add_distr_l. rewrite !add_assoc. apply add_cancel_r. rewrite mul_1_r. rewrite add_comm, add_assoc, !add_opp_r, sub_1_r, two_succ, pred_succ. destruct (-a).[n]; simpl. now rewrite sub_0_r. now nzsimpl'. Qed. (** All bits of number (-1) are 1 *) Lemma bits_m1 : forall n, 0<=n -> (-1).[n] = true. Proof. intros. now rewrite bits_opp, one_succ, pred_succ, bits_0. Qed. (** Various ways to refer to the lowest bit of a number *) Lemma bit0_odd : forall a, a.[0] = odd a. Proof. intros. symmetry. destruct (exists_div2 a) as (a' & b & EQ). rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2. destruct b; simpl; apply odd_1 || apply odd_0. Qed. Lemma bit0_eqb : forall a, a.[0] = eqb (a mod 2) 1. Proof. intros a. rewrite testbit_eqb by order. now nzsimpl. Qed. Lemma bit0_mod : forall a, a.[0] == a mod 2. Proof. intros a. rewrite testbit_spec' by order. now nzsimpl. Qed. (** Hence testing a bit is equivalent to shifting and testing parity *) Lemma testbit_odd : forall a n, a.[n] = odd (a>>n). Proof. intros. now rewrite <- bit0_odd, shiftr_spec, add_0_l. Qed. (** [log2] gives the highest nonzero bit of positive numbers *) Lemma bit_log2 : forall a, 0 a.[log2 a] = true. Proof. intros a Ha. assert (Ha' := log2_nonneg a). destruct (log2_spec_alt a Ha) as (r & EQ & Hr). rewrite EQ at 1. rewrite testbit_true, add_comm by trivial. rewrite <- (mul_1_l (2^log2 a)) at 1. rewrite div_add by order_nz. rewrite div_small; trivial. rewrite add_0_l. apply mod_small. split; order'. Qed. Lemma bits_above_log2 : forall a n, 0<=a -> log2 a < n -> a.[n] = false. Proof. intros a n Ha H. assert (Hn : 0<=n). transitivity (log2 a). apply log2_nonneg. order'. rewrite testbit_false by trivial. rewrite div_small. nzsimpl; order'. split. order. apply log2_lt_cancel. now rewrite log2_pow2. Qed. (** Hence the number of bits of [a] is [1+log2 a] (see [Pos.size_nat] and [Pos.size]). *) (** For negative numbers, things are the other ways around: log2 gives the highest zero bit (for numbers below -1). *) Lemma bit_log2_neg : forall a, a < -1 -> a.[log2 (P (-a))] = false. Proof. intros a Ha. rewrite <- (opp_involutive a) at 1. rewrite bits_opp. apply negb_false_iff. apply bit_log2. apply opp_lt_mono in Ha. rewrite opp_involutive in Ha. apply lt_succ_lt_pred. now rewrite <- one_succ. apply log2_nonneg. Qed. Lemma bits_above_log2_neg : forall a n, a < 0 -> log2 (P (-a)) < n -> a.[n] = true. Proof. intros a n Ha H. assert (Hn : 0<=n). transitivity (log2 (P (-a))). apply log2_nonneg. order'. rewrite <- (opp_involutive a), bits_opp, negb_true_iff by trivial. apply bits_above_log2; trivial. now rewrite <- opp_succ, opp_nonneg_nonpos, le_succ_l. Qed. (** Accesing a high enough bit of a number gives its sign *) Lemma bits_iff_nonneg : forall a n, log2 (abs a) < n -> (0<=a <-> a.[n] = false). Proof. intros a n Hn. split; intros H. rewrite abs_eq in Hn; trivial. now apply bits_above_log2. destruct (le_gt_cases 0 a); trivial. rewrite abs_neq in Hn by order. rewrite bits_above_log2_neg in H; try easy. apply le_lt_trans with (log2 (-a)); trivial. apply log2_le_mono. apply le_pred_l. Qed. Lemma bits_iff_nonneg' : forall a, 0<=a <-> a.[S (log2 (abs a))] = false. Proof. intros. apply bits_iff_nonneg. apply lt_succ_diag_r. Qed. Lemma bits_iff_nonneg_ex : forall a, 0<=a <-> (exists k, forall m, k a.[m] = false). Proof. intros a. split. intros Ha. exists (log2 a). intros m Hm. now apply bits_above_log2. intros (k,Hk). destruct (le_gt_cases k (log2 (abs a))). now apply bits_iff_nonneg', Hk, lt_succ_r. apply (bits_iff_nonneg a (S k)). now apply lt_succ_r, lt_le_incl. apply Hk. apply lt_succ_diag_r. Qed. Lemma bits_iff_neg : forall a n, log2 (abs a) < n -> (a<0 <-> a.[n] = true). Proof. intros a n Hn. now rewrite lt_nge, <- not_false_iff_true, (bits_iff_nonneg a n). Qed. Lemma bits_iff_neg' : forall a, a<0 <-> a.[S (log2 (abs a))] = true. Proof. intros. apply bits_iff_neg. apply lt_succ_diag_r. Qed. Lemma bits_iff_neg_ex : forall a, a<0 <-> (exists k, forall m, k a.[m] = true). Proof. intros a. split. intros Ha. exists (log2 (P (-a))). intros m Hm. now apply bits_above_log2_neg. intros (k,Hk). destruct (le_gt_cases k (log2 (abs a))). now apply bits_iff_neg', Hk, lt_succ_r. apply (bits_iff_neg a (S k)). now apply lt_succ_r, lt_le_incl. apply Hk. apply lt_succ_diag_r. Qed. (** Testing bits after division or multiplication by a power of two *) Lemma div2_bits : forall a n, 0<=n -> (a/2).[n] = a.[S n]. Proof. intros a n Hn. apply eq_true_iff_eq. rewrite 2 testbit_true by order_pos. rewrite pow_succ_r by trivial. now rewrite div_div by order_pos. Qed. Lemma div_pow2_bits : forall a n m, 0<=n -> 0<=m -> (a/2^n).[m] = a.[m+n]. Proof. intros a n m Hn. revert a m. apply le_ind with (4:=Hn). solve_proper. intros a m Hm. now nzsimpl. clear n Hn. intros n Hn IH a m Hm. nzsimpl; trivial. rewrite <- div_div by order_pos. now rewrite IH, div2_bits by order_pos. Qed. Lemma double_bits_succ : forall a n, (2*a).[S n] = a.[n]. Proof. intros a n. destruct (le_gt_cases 0 n) as [Hn|Hn]. now rewrite <- div2_bits, mul_comm, div_mul by order'. rewrite (testbit_neg_r a n Hn). apply le_succ_l in Hn. le_elim Hn. now rewrite testbit_neg_r. now rewrite Hn, bit0_odd, odd_mul, odd_2. Qed. Lemma double_bits : forall a n, (2*a).[n] = a.[P n]. Proof. intros a n. rewrite <- (succ_pred n) at 1. apply double_bits_succ. Qed. Lemma mul_pow2_bits_add : forall a n m, 0<=n -> (a*2^n).[n+m] = a.[m]. Proof. intros a n m Hn. revert a m. apply le_ind with (4:=Hn). solve_proper. intros a m. now nzsimpl. clear n Hn. intros n Hn IH a m. nzsimpl; trivial. rewrite mul_assoc, (mul_comm _ 2), <- mul_assoc. now rewrite double_bits_succ. Qed. Lemma mul_pow2_bits : forall a n m, 0<=n -> (a*2^n).[m] = a.[m-n]. Proof. intros. rewrite <- (add_simpl_r m n) at 1. rewrite add_sub_swap, add_comm. now apply mul_pow2_bits_add. Qed. Lemma mul_pow2_bits_low : forall a n m, m (a*2^n).[m] = false. Proof. intros. destruct (le_gt_cases 0 n). rewrite mul_pow2_bits by trivial. apply testbit_neg_r. now apply lt_sub_0. now rewrite pow_neg_r, mul_0_r, bits_0. Qed. (** Selecting the low part of a number can be done by a modulo *) Lemma mod_pow2_bits_high : forall a n m, 0<=n<=m -> (a mod 2^n).[m] = false. Proof. intros a n m (Hn,H). destruct (mod_pos_bound a (2^n)) as [LE LT]. order_pos. le_elim LE. apply bits_above_log2; try order. apply lt_le_trans with n; trivial. apply log2_lt_pow2; trivial. now rewrite <- LE, bits_0. Qed. Lemma mod_pow2_bits_low : forall a n m, m (a mod 2^n).[m] = a.[m]. Proof. intros a n m H. destruct (le_gt_cases 0 m) as [Hm|Hm]; [|now rewrite !testbit_neg_r]. rewrite testbit_eqb; trivial. rewrite <- (mod_add _ (2^(P (n-m))*(a/2^n))) by order'. rewrite <- div_add by order_nz. rewrite (mul_comm _ 2), mul_assoc, <- pow_succ_r, succ_pred. rewrite mul_comm, mul_assoc, <- pow_add_r, (add_comm m), sub_add; trivial. rewrite add_comm, <- div_mod by order_nz. symmetry. apply testbit_eqb; trivial. apply le_0_sub; order. now apply lt_le_pred, lt_0_sub. Qed. (** We now prove that having the same bits implies equality. For that we use a notion of equality over functional streams of bits. *) Definition eqf (f g:t -> bool) := forall n:t, f n = g n. Instance eqf_equiv : Equivalence eqf. Proof. split; congruence. Qed. Local Infix "===" := eqf (at level 70, no associativity). Instance testbit_eqf : Proper (eq==>eqf) testbit. Proof. intros a a' Ha n. now rewrite Ha. Qed. (** Only zero corresponds to the always-false stream. *) Lemma bits_inj_0 : forall a, (forall n, a.[n] = false) -> a == 0. Proof. intros a H. destruct (lt_trichotomy a 0) as [Ha|[Ha|Ha]]; trivial. apply (bits_above_log2_neg a (S (log2 (P (-a))))) in Ha. now rewrite H in Ha. apply lt_succ_diag_r. apply bit_log2 in Ha. now rewrite H in Ha. Qed. (** If two numbers produce the same stream of bits, they are equal. *) Lemma bits_inj : forall a b, testbit a === testbit b -> a == b. Proof. assert (AUX : forall n, 0<=n -> forall a b, 0<=a<2^n -> testbit a === testbit b -> a == b). intros n Hn. apply le_ind with (4:=Hn). solve_proper. intros a b Ha H. rewrite pow_0_r, one_succ, lt_succ_r in Ha. assert (Ha' : a == 0) by (destruct Ha; order). rewrite Ha' in *. symmetry. apply bits_inj_0. intros m. now rewrite <- H, bits_0. clear n Hn. intros n Hn IH a b (Ha,Ha') H. rewrite (div_mod a 2), (div_mod b 2) by order'. f_equiv; [ | now rewrite <- 2 bit0_mod, H]. f_equiv. apply IH. split. apply div_pos; order'. apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r. intros m. destruct (le_gt_cases 0 m). rewrite 2 div2_bits by trivial. apply H. now rewrite 2 testbit_neg_r. intros a b H. destruct (le_gt_cases 0 a) as [Ha|Ha]. apply (AUX a); trivial. split; trivial. apply pow_gt_lin_r; order'. apply succ_inj, opp_inj. assert (0 <= - S a). apply opp_le_mono. now rewrite opp_involutive, opp_0, le_succ_l. apply (AUX (-(S a))); trivial. split; trivial. apply pow_gt_lin_r; order'. intros m. destruct (le_gt_cases 0 m). now rewrite 2 bits_opp, 2 pred_succ, H. now rewrite 2 testbit_neg_r. Qed. Lemma bits_inj_iff : forall a b, testbit a === testbit b <-> a == b. Proof. split. apply bits_inj. intros EQ; now rewrite EQ. Qed. (** In fact, checking the bits at positive indexes is enough. *) Lemma bits_inj' : forall a b, (forall n, 0<=n -> a.[n] = b.[n]) -> a == b. Proof. intros a b H. apply bits_inj. intros n. destruct (le_gt_cases 0 n). now apply H. now rewrite 2 testbit_neg_r. Qed. Lemma bits_inj_iff' : forall a b, (forall n, 0<=n -> a.[n] = b.[n]) <-> a == b. Proof. split. apply bits_inj'. intros EQ n Hn; now rewrite EQ. Qed. Ltac bitwise := apply bits_inj'; intros ?m ?Hm; autorewrite with bitwise. Hint Rewrite lxor_spec lor_spec land_spec ldiff_spec bits_0 : bitwise. (** The streams of bits that correspond to a numbers are exactly the ones which are stationary after some point. *) Lemma are_bits : forall (f:t->bool), Proper (eq==>Logic.eq) f -> ((exists n, forall m, 0<=m -> f m = n.[m]) <-> (exists k, forall m, k<=m -> f m = f k)). Proof. intros f Hf. split. intros (a,H). destruct (le_gt_cases 0 a). exists (S (log2 a)). intros m Hm. apply le_succ_l in Hm. rewrite 2 H, 2 bits_above_log2; trivial using lt_succ_diag_r. order_pos. apply le_trans with (log2 a); order_pos. exists (S (log2 (P (-a)))). intros m Hm. apply le_succ_l in Hm. rewrite 2 H, 2 bits_above_log2_neg; trivial using lt_succ_diag_r. order_pos. apply le_trans with (log2 (P (-a))); order_pos. intros (k,Hk). destruct (lt_ge_cases k 0) as [LT|LE]. case_eq (f 0); intros H0. exists (-1). intros m Hm. rewrite bits_m1, Hk by order. symmetry; rewrite <- H0. apply Hk; order. exists 0. intros m Hm. rewrite bits_0, Hk by order. symmetry; rewrite <- H0. apply Hk; order. revert f Hf Hk. apply le_ind with (4:=LE). (* compat : solve_proper fails here *) apply proper_sym_impl_iff. exact eq_sym. clear k LE. intros k k' Hk IH f Hf H. apply IH; trivial. now setoid_rewrite Hk. (* /compat *) intros f Hf H0. destruct (f 0). exists (-1). intros m Hm. now rewrite bits_m1, H0. exists 0. intros m Hm. now rewrite bits_0, H0. clear k LE. intros k LE IH f Hf Hk. destruct (IH (fun m => f (S m))) as (n, Hn). solve_proper. intros m Hm. apply Hk. now rewrite <- succ_le_mono. exists (f 0 + 2*n). intros m Hm. le_elim Hm. rewrite <- (succ_pred m), Hn, <- div2_bits. rewrite mul_comm, div_add, b2z_div2, add_0_l; trivial. order'. now rewrite <- lt_succ_r, succ_pred. now rewrite <- lt_succ_r, succ_pred. rewrite <- Hm. symmetry. apply add_b2z_double_bit0. Qed. (** * Properties of shifts *) (** First, a unified specification for [shiftl] : the [shiftl_spec] below (combined with [testbit_neg_r]) is equivalent to [shiftl_spec_low] and [shiftl_spec_high]. *) Lemma shiftl_spec : forall a n m, 0<=m -> (a << n).[m] = a.[m-n]. Proof. intros. destruct (le_gt_cases n m). now apply shiftl_spec_high. rewrite shiftl_spec_low, testbit_neg_r; trivial. now apply lt_sub_0. Qed. (** A shiftl by a negative number is a shiftr, and vice-versa *) Lemma shiftr_opp_r : forall a n, a >> (-n) == a << n. Proof. intros. bitwise. now rewrite shiftr_spec, shiftl_spec, add_opp_r. Qed. Lemma shiftl_opp_r : forall a n, a << (-n) == a >> n. Proof. intros. bitwise. now rewrite shiftr_spec, shiftl_spec, sub_opp_r. Qed. (** Shifts correspond to multiplication or division by a power of two *) Lemma shiftr_div_pow2 : forall a n, 0<=n -> a >> n == a / 2^n. Proof. intros. bitwise. now rewrite shiftr_spec, div_pow2_bits. Qed. Lemma shiftr_mul_pow2 : forall a n, n<=0 -> a >> n == a * 2^(-n). Proof. intros. bitwise. rewrite shiftr_spec, mul_pow2_bits; trivial. now rewrite sub_opp_r. now apply opp_nonneg_nonpos. Qed. Lemma shiftl_mul_pow2 : forall a n, 0<=n -> a << n == a * 2^n. Proof. intros. bitwise. now rewrite shiftl_spec, mul_pow2_bits. Qed. Lemma shiftl_div_pow2 : forall a n, n<=0 -> a << n == a / 2^(-n). Proof. intros. bitwise. rewrite shiftl_spec, div_pow2_bits; trivial. now rewrite add_opp_r. now apply opp_nonneg_nonpos. Qed. (** Shifts are morphisms *) Instance shiftr_wd : Proper (eq==>eq==>eq) shiftr. Proof. intros a a' Ha n n' Hn. destruct (le_ge_cases n 0) as [H|H]; assert (H':=H); rewrite Hn in H'. now rewrite 2 shiftr_mul_pow2, Ha, Hn. now rewrite 2 shiftr_div_pow2, Ha, Hn. Qed. Instance shiftl_wd : Proper (eq==>eq==>eq) shiftl. Proof. intros a a' Ha n n' Hn. now rewrite <- 2 shiftr_opp_r, Ha, Hn. Qed. (** We could also have specified shiftl with an addition on the left. *) Lemma shiftl_spec_alt : forall a n m, 0<=n -> (a << n).[m+n] = a.[m]. Proof. intros. now rewrite shiftl_mul_pow2, mul_pow2_bits, add_simpl_r. Qed. (** Chaining several shifts. The only case for which there isn't any simple expression is a true shiftr followed by a true shiftl. *) Lemma shiftl_shiftl : forall a n m, 0<=n -> (a << n) << m == a << (n+m). Proof. intros a n p Hn. bitwise. rewrite 2 (shiftl_spec _ _ m) by trivial. rewrite add_comm, sub_add_distr. destruct (le_gt_cases 0 (m-p)) as [H|H]. now rewrite shiftl_spec. rewrite 2 testbit_neg_r; trivial. apply lt_sub_0. now apply lt_le_trans with 0. Qed. Lemma shiftr_shiftl_l : forall a n m, 0<=n -> (a << n) >> m == a << (n-m). Proof. intros. now rewrite <- shiftl_opp_r, shiftl_shiftl, add_opp_r. Qed. Lemma shiftr_shiftl_r : forall a n m, 0<=n -> (a << n) >> m == a >> (m-n). Proof. intros. now rewrite <- 2 shiftl_opp_r, shiftl_shiftl, opp_sub_distr, add_comm. Qed. Lemma shiftr_shiftr : forall a n m, 0<=m -> (a >> n) >> m == a >> (n+m). Proof. intros a n p Hn. bitwise. rewrite 3 shiftr_spec; trivial. now rewrite (add_comm n p), add_assoc. now apply add_nonneg_nonneg. Qed. (** shifts and constants *) Lemma shiftl_1_l : forall n, 1 << n == 2^n. Proof. intros n. destruct (le_gt_cases 0 n). now rewrite shiftl_mul_pow2, mul_1_l. rewrite shiftl_div_pow2, div_1_l, pow_neg_r; try order. apply pow_gt_1. order'. now apply opp_pos_neg. Qed. Lemma shiftl_0_r : forall a, a << 0 == a. Proof. intros. rewrite shiftl_mul_pow2 by order. now nzsimpl. Qed. Lemma shiftr_0_r : forall a, a >> 0 == a. Proof. intros. now rewrite <- shiftl_opp_r, opp_0, shiftl_0_r. Qed. Lemma shiftl_0_l : forall n, 0 << n == 0. Proof. intros. destruct (le_ge_cases 0 n). rewrite shiftl_mul_pow2 by trivial. now nzsimpl. rewrite shiftl_div_pow2 by trivial. rewrite <- opp_nonneg_nonpos in H. nzsimpl; order_nz. Qed. Lemma shiftr_0_l : forall n, 0 >> n == 0. Proof. intros. now rewrite <- shiftl_opp_r, shiftl_0_l. Qed. Lemma shiftl_eq_0_iff : forall a n, 0<=n -> (a << n == 0 <-> a == 0). Proof. intros a n Hn. rewrite shiftl_mul_pow2 by trivial. rewrite eq_mul_0. split. intros [H | H]; trivial. contradict H; order_nz. intros H. now left. Qed. Lemma shiftr_eq_0_iff : forall a n, a >> n == 0 <-> a==0 \/ (0 log2 a < n -> a >> n == 0. Proof. intros a n Ha H. apply shiftr_eq_0_iff. le_elim Ha. right. now split. now left. Qed. (** Properties of [div2]. *) Lemma div2_div : forall a, div2 a == a/2. Proof. intros. rewrite div2_spec, shiftr_div_pow2. now nzsimpl. order'. Qed. Instance div2_wd : Proper (eq==>eq) div2. Proof. intros a a' Ha. now rewrite 2 div2_div, Ha. Qed. Lemma div2_odd : forall a, a == 2*(div2 a) + odd a. Proof. intros a. rewrite div2_div, <- bit0_odd, bit0_mod. apply div_mod. order'. Qed. (** Properties of [lxor] and others, directly deduced from properties of [xorb] and others. *) Instance lxor_wd : Proper (eq ==> eq ==> eq) lxor. Proof. intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb. Qed. Instance land_wd : Proper (eq ==> eq ==> eq) land. Proof. intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb. Qed. Instance lor_wd : Proper (eq ==> eq ==> eq) lor. Proof. intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb. Qed. Instance ldiff_wd : Proper (eq ==> eq ==> eq) ldiff. Proof. intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb. Qed. Lemma lxor_eq : forall a a', lxor a a' == 0 -> a == a'. Proof. intros a a' H. bitwise. apply xorb_eq. now rewrite <- lxor_spec, H, bits_0. Qed. Lemma lxor_nilpotent : forall a, lxor a a == 0. Proof. intros. bitwise. apply xorb_nilpotent. Qed. Lemma lxor_eq_0_iff : forall a a', lxor a a' == 0 <-> a == a'. Proof. split. apply lxor_eq. intros EQ; rewrite EQ; apply lxor_nilpotent. Qed. Lemma lxor_0_l : forall a, lxor 0 a == a. Proof. intros. bitwise. apply xorb_false_l. Qed. Lemma lxor_0_r : forall a, lxor a 0 == a. Proof. intros. bitwise. apply xorb_false_r. Qed. Lemma lxor_comm : forall a b, lxor a b == lxor b a. Proof. intros. bitwise. apply xorb_comm. Qed. Lemma lxor_assoc : forall a b c, lxor (lxor a b) c == lxor a (lxor b c). Proof. intros. bitwise. apply xorb_assoc. Qed. Lemma lor_0_l : forall a, lor 0 a == a. Proof. intros. bitwise. trivial. Qed. Lemma lor_0_r : forall a, lor a 0 == a. Proof. intros. bitwise. apply orb_false_r. Qed. Lemma lor_comm : forall a b, lor a b == lor b a. Proof. intros. bitwise. apply orb_comm. Qed. Lemma lor_assoc : forall a b c, lor a (lor b c) == lor (lor a b) c. Proof. intros. bitwise. apply orb_assoc. Qed. Lemma lor_diag : forall a, lor a a == a. Proof. intros. bitwise. apply orb_diag. Qed. Lemma lor_eq_0_l : forall a b, lor a b == 0 -> a == 0. Proof. intros a b H. bitwise. apply (orb_false_iff a.[m] b.[m]). now rewrite <- lor_spec, H, bits_0. Qed. Lemma lor_eq_0_iff : forall a b, lor a b == 0 <-> a == 0 /\ b == 0. Proof. intros a b. split. split. now apply lor_eq_0_l in H. rewrite lor_comm in H. now apply lor_eq_0_l in H. intros (EQ,EQ'). now rewrite EQ, lor_0_l. Qed. Lemma land_0_l : forall a, land 0 a == 0. Proof. intros. bitwise. trivial. Qed. Lemma land_0_r : forall a, land a 0 == 0. Proof. intros. bitwise. apply andb_false_r. Qed. Lemma land_comm : forall a b, land a b == land b a. Proof. intros. bitwise. apply andb_comm. Qed. Lemma land_assoc : forall a b c, land a (land b c) == land (land a b) c. Proof. intros. bitwise. apply andb_assoc. Qed. Lemma land_diag : forall a, land a a == a. Proof. intros. bitwise. apply andb_diag. Qed. Lemma ldiff_0_l : forall a, ldiff 0 a == 0. Proof. intros. bitwise. trivial. Qed. Lemma ldiff_0_r : forall a, ldiff a 0 == a. Proof. intros. bitwise. now rewrite andb_true_r. Qed. Lemma ldiff_diag : forall a, ldiff a a == 0. Proof. intros. bitwise. apply andb_negb_r. Qed. Lemma lor_land_distr_l : forall a b c, lor (land a b) c == land (lor a c) (lor b c). Proof. intros. bitwise. apply orb_andb_distrib_l. Qed. Lemma lor_land_distr_r : forall a b c, lor a (land b c) == land (lor a b) (lor a c). Proof. intros. bitwise. apply orb_andb_distrib_r. Qed. Lemma land_lor_distr_l : forall a b c, land (lor a b) c == lor (land a c) (land b c). Proof. intros. bitwise. apply andb_orb_distrib_l. Qed. Lemma land_lor_distr_r : forall a b c, land a (lor b c) == lor (land a b) (land a c). Proof. intros. bitwise. apply andb_orb_distrib_r. Qed. Lemma ldiff_ldiff_l : forall a b c, ldiff (ldiff a b) c == ldiff a (lor b c). Proof. intros. bitwise. now rewrite negb_orb, andb_assoc. Qed. Lemma lor_ldiff_and : forall a b, lor (ldiff a b) (land a b) == a. Proof. intros. bitwise. now rewrite <- andb_orb_distrib_r, orb_comm, orb_negb_r, andb_true_r. Qed. Lemma land_ldiff : forall a b, land (ldiff a b) b == 0. Proof. intros. bitwise. now rewrite <-andb_assoc, (andb_comm (negb _)), andb_negb_r, andb_false_r. Qed. (** Properties of [setbit] and [clearbit] *) Definition setbit a n := lor a (1 << n). Definition clearbit a n := ldiff a (1 << n). Lemma setbit_spec' : forall a n, setbit a n == lor a (2^n). Proof. intros. unfold setbit. now rewrite shiftl_1_l. Qed. Lemma clearbit_spec' : forall a n, clearbit a n == ldiff a (2^n). Proof. intros. unfold clearbit. now rewrite shiftl_1_l. Qed. Instance setbit_wd : Proper (eq==>eq==>eq) setbit. Proof. unfold setbit. solve_proper. Qed. Instance clearbit_wd : Proper (eq==>eq==>eq) clearbit. Proof. unfold clearbit. solve_proper. Qed. Lemma pow2_bits_true : forall n, 0<=n -> (2^n).[n] = true. Proof. intros. rewrite <- (mul_1_l (2^n)). now rewrite mul_pow2_bits, sub_diag, bit0_odd, odd_1. Qed. Lemma pow2_bits_false : forall n m, n~=m -> (2^n).[m] = false. Proof. intros. destruct (le_gt_cases 0 n); [|now rewrite pow_neg_r, bits_0]. destruct (le_gt_cases n m). rewrite <- (mul_1_l (2^n)), mul_pow2_bits; trivial. rewrite <- (succ_pred (m-n)), <- div2_bits. now rewrite div_small, bits_0 by (split; order'). rewrite <- lt_succ_r, succ_pred, lt_0_sub. order. rewrite <- (mul_1_l (2^n)), mul_pow2_bits_low; trivial. Qed. Lemma pow2_bits_eqb : forall n m, 0<=n -> (2^n).[m] = eqb n m. Proof. intros n m Hn. apply eq_true_iff_eq. rewrite eqb_eq. split. destruct (eq_decidable n m) as [H|H]. trivial. now rewrite (pow2_bits_false _ _ H). intros EQ. rewrite EQ. apply pow2_bits_true; order. Qed. Lemma setbit_eqb : forall a n m, 0<=n -> (setbit a n).[m] = eqb n m || a.[m]. Proof. intros. now rewrite setbit_spec', lor_spec, pow2_bits_eqb, orb_comm. Qed. Lemma setbit_iff : forall a n m, 0<=n -> ((setbit a n).[m] = true <-> n==m \/ a.[m] = true). Proof. intros. now rewrite setbit_eqb, orb_true_iff, eqb_eq. Qed. Lemma setbit_eq : forall a n, 0<=n -> (setbit a n).[n] = true. Proof. intros. apply setbit_iff; trivial. now left. Qed. Lemma setbit_neq : forall a n m, 0<=n -> n~=m -> (setbit a n).[m] = a.[m]. Proof. intros a n m Hn H. rewrite setbit_eqb; trivial. rewrite <- eqb_eq in H. apply not_true_is_false in H. now rewrite H. Qed. Lemma clearbit_eqb : forall a n m, (clearbit a n).[m] = a.[m] && negb (eqb n m). Proof. intros. destruct (le_gt_cases 0 m); [| now rewrite 2 testbit_neg_r]. rewrite clearbit_spec', ldiff_spec. f_equal. f_equal. destruct (le_gt_cases 0 n) as [Hn|Hn]. now apply pow2_bits_eqb. symmetry. rewrite pow_neg_r, bits_0, <- not_true_iff_false, eqb_eq; order. Qed. Lemma clearbit_iff : forall a n m, (clearbit a n).[m] = true <-> a.[m] = true /\ n~=m. Proof. intros. rewrite clearbit_eqb, andb_true_iff, <- eqb_eq. now rewrite negb_true_iff, not_true_iff_false. Qed. Lemma clearbit_eq : forall a n, (clearbit a n).[n] = false. Proof. intros. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)). apply andb_false_r. Qed. Lemma clearbit_neq : forall a n m, n~=m -> (clearbit a n).[m] = a.[m]. Proof. intros a n m H. rewrite clearbit_eqb. rewrite <- eqb_eq in H. apply not_true_is_false in H. rewrite H. apply andb_true_r. Qed. (** Shifts of bitwise operations *) Lemma shiftl_lxor : forall a b n, (lxor a b) << n == lxor (a << n) (b << n). Proof. intros. bitwise. now rewrite !shiftl_spec, lxor_spec. Qed. Lemma shiftr_lxor : forall a b n, (lxor a b) >> n == lxor (a >> n) (b >> n). Proof. intros. bitwise. now rewrite !shiftr_spec, lxor_spec. Qed. Lemma shiftl_land : forall a b n, (land a b) << n == land (a << n) (b << n). Proof. intros. bitwise. now rewrite !shiftl_spec, land_spec. Qed. Lemma shiftr_land : forall a b n, (land a b) >> n == land (a >> n) (b >> n). Proof. intros. bitwise. now rewrite !shiftr_spec, land_spec. Qed. Lemma shiftl_lor : forall a b n, (lor a b) << n == lor (a << n) (b << n). Proof. intros. bitwise. now rewrite !shiftl_spec, lor_spec. Qed. Lemma shiftr_lor : forall a b n, (lor a b) >> n == lor (a >> n) (b >> n). Proof. intros. bitwise. now rewrite !shiftr_spec, lor_spec. Qed. Lemma shiftl_ldiff : forall a b n, (ldiff a b) << n == ldiff (a << n) (b << n). Proof. intros. bitwise. now rewrite !shiftl_spec, ldiff_spec. Qed. Lemma shiftr_ldiff : forall a b n, (ldiff a b) >> n == ldiff (a >> n) (b >> n). Proof. intros. bitwise. now rewrite !shiftr_spec, ldiff_spec. Qed. (** For integers, we do have a binary complement function *) Definition lnot a := P (-a). Instance lnot_wd : Proper (eq==>eq) lnot. Proof. unfold lnot. solve_proper. Qed. Lemma lnot_spec : forall a n, 0<=n -> (lnot a).[n] = negb a.[n]. Proof. intros. unfold lnot. rewrite <- (opp_involutive a) at 2. rewrite bits_opp, negb_involutive; trivial. Qed. Lemma lnot_involutive : forall a, lnot (lnot a) == a. Proof. intros a. bitwise. now rewrite 2 lnot_spec, negb_involutive. Qed. Lemma lnot_0 : lnot 0 == -1. Proof. unfold lnot. now rewrite opp_0, <- sub_1_r, sub_0_l. Qed. Lemma lnot_m1 : lnot (-1) == 0. Proof. unfold lnot. now rewrite opp_involutive, one_succ, pred_succ. Qed. (** Complement and other operations *) Lemma lor_m1_r : forall a, lor a (-1) == -1. Proof. intros. bitwise. now rewrite bits_m1, orb_true_r. Qed. Lemma lor_m1_l : forall a, lor (-1) a == -1. Proof. intros. now rewrite lor_comm, lor_m1_r. Qed. Lemma land_m1_r : forall a, land a (-1) == a. Proof. intros. bitwise. now rewrite bits_m1, andb_true_r. Qed. Lemma land_m1_l : forall a, land (-1) a == a. Proof. intros. now rewrite land_comm, land_m1_r. Qed. Lemma ldiff_m1_r : forall a, ldiff a (-1) == 0. Proof. intros. bitwise. now rewrite bits_m1, andb_false_r. Qed. Lemma ldiff_m1_l : forall a, ldiff (-1) a == lnot a. Proof. intros. bitwise. now rewrite lnot_spec, bits_m1. Qed. Lemma lor_lnot_diag : forall a, lor a (lnot a) == -1. Proof. intros a. bitwise. rewrite lnot_spec, bits_m1; trivial. now destruct a.[m]. Qed. Lemma add_lnot_diag : forall a, a + lnot a == -1. Proof. intros a. unfold lnot. now rewrite add_pred_r, add_opp_r, sub_diag, one_succ, opp_succ, opp_0. Qed. Lemma ldiff_land : forall a b, ldiff a b == land a (lnot b). Proof. intros. bitwise. now rewrite lnot_spec. Qed. Lemma land_lnot_diag : forall a, land a (lnot a) == 0. Proof. intros. now rewrite <- ldiff_land, ldiff_diag. Qed. Lemma lnot_lor : forall a b, lnot (lor a b) == land (lnot a) (lnot b). Proof. intros a b. bitwise. now rewrite !lnot_spec, lor_spec, negb_orb. Qed. Lemma lnot_land : forall a b, lnot (land a b) == lor (lnot a) (lnot b). Proof. intros a b. bitwise. now rewrite !lnot_spec, land_spec, negb_andb. Qed. Lemma lnot_ldiff : forall a b, lnot (ldiff a b) == lor (lnot a) b. Proof. intros a b. bitwise. now rewrite !lnot_spec, ldiff_spec, negb_andb, negb_involutive. Qed. Lemma lxor_lnot_lnot : forall a b, lxor (lnot a) (lnot b) == lxor a b. Proof. intros a b. bitwise. now rewrite !lnot_spec, xorb_negb_negb. Qed. Lemma lnot_lxor_l : forall a b, lnot (lxor a b) == lxor (lnot a) b. Proof. intros a b. bitwise. now rewrite !lnot_spec, !lxor_spec, negb_xorb_l. Qed. Lemma lnot_lxor_r : forall a b, lnot (lxor a b) == lxor a (lnot b). Proof. intros a b. bitwise. now rewrite !lnot_spec, !lxor_spec, negb_xorb_r. Qed. Lemma lxor_m1_r : forall a, lxor a (-1) == lnot a. Proof. intros. now rewrite <- (lxor_0_r (lnot a)), <- lnot_m1, lxor_lnot_lnot. Qed. Lemma lxor_m1_l : forall a, lxor (-1) a == lnot a. Proof. intros. now rewrite lxor_comm, lxor_m1_r. Qed. Lemma lxor_lor : forall a b, land a b == 0 -> lxor a b == lor a b. Proof. intros a b H. bitwise. assert (a.[m] && b.[m] = false) by now rewrite <- land_spec, H, bits_0. now destruct a.[m], b.[m]. Qed. Lemma lnot_shiftr : forall a n, 0<=n -> lnot (a >> n) == (lnot a) >> n. Proof. intros a n Hn. bitwise. now rewrite lnot_spec, 2 shiftr_spec, lnot_spec by order_pos. Qed. (** [(ones n)] is [2^n-1], the number with [n] digits 1 *) Definition ones n := P (1<eq) ones. Proof. unfold ones. solve_proper. Qed. Lemma ones_equiv : forall n, ones n == P (2^n). Proof. intros. unfold ones. destruct (le_gt_cases 0 n). now rewrite shiftl_mul_pow2, mul_1_l. f_equiv. rewrite pow_neg_r; trivial. rewrite <- shiftr_opp_r. apply shiftr_eq_0_iff. right; split. order'. rewrite log2_1. now apply opp_pos_neg. Qed. Lemma ones_add : forall n m, 0<=n -> 0<=m -> ones (m+n) == 2^m * ones n + ones m. Proof. intros n m Hn Hm. rewrite !ones_equiv. rewrite <- !sub_1_r, mul_sub_distr_l, mul_1_r, <- pow_add_r by trivial. rewrite add_sub_assoc, sub_add. reflexivity. Qed. Lemma ones_div_pow2 : forall n m, 0<=m<=n -> ones n / 2^m == ones (n-m). Proof. intros n m (Hm,H). symmetry. apply div_unique with (ones m). left. rewrite ones_equiv. split. rewrite <- lt_succ_r, succ_pred. order_pos. now rewrite <- le_succ_l, succ_pred. rewrite <- (sub_add m n) at 1. rewrite (add_comm _ m). apply ones_add; trivial. now apply le_0_sub. Qed. Lemma ones_mod_pow2 : forall n m, 0<=m<=n -> (ones n) mod (2^m) == ones m. Proof. intros n m (Hm,H). symmetry. apply mod_unique with (ones (n-m)). left. rewrite ones_equiv. split. rewrite <- lt_succ_r, succ_pred. order_pos. now rewrite <- le_succ_l, succ_pred. rewrite <- (sub_add m n) at 1. rewrite (add_comm _ m). apply ones_add; trivial. now apply le_0_sub. Qed. Lemma ones_spec_low : forall n m, 0<=m (ones n).[m] = true. Proof. intros n m (Hm,H). apply testbit_true; trivial. rewrite ones_div_pow2 by (split; order). rewrite <- (pow_1_r 2). rewrite ones_mod_pow2. rewrite ones_equiv. now nzsimpl'. split. order'. apply le_add_le_sub_r. nzsimpl. now apply le_succ_l. Qed. Lemma ones_spec_high : forall n m, 0<=n<=m -> (ones n).[m] = false. Proof. intros n m (Hn,H). le_elim Hn. apply bits_above_log2; rewrite ones_equiv. rewrite <-lt_succ_r, succ_pred; order_pos. rewrite log2_pred_pow2; trivial. now rewrite <-le_succ_l, succ_pred. rewrite ones_equiv. now rewrite <- Hn, pow_0_r, one_succ, pred_succ, bits_0. Qed. Lemma ones_spec_iff : forall n m, 0<=n -> ((ones n).[m] = true <-> 0<=m log2 a < n -> lor a (ones n) == ones n. Proof. intros a n Ha H. bitwise. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; try split; trivial. now apply lt_le_trans with n. apply le_trans with (log2 a); order_pos. rewrite ones_spec_low, orb_true_r; try split; trivial. Qed. Lemma land_ones : forall a n, 0<=n -> land a (ones n) == a mod 2^n. Proof. intros a n Hn. bitwise. destruct (le_gt_cases n m). rewrite ones_spec_high, mod_pow2_bits_high, andb_false_r; try split; trivial. rewrite ones_spec_low, mod_pow2_bits_low, andb_true_r; try split; trivial. Qed. Lemma land_ones_low : forall a n, 0<=a -> log2 a < n -> land a (ones n) == a. Proof. intros a n Ha H. assert (Hn : 0<=n) by (generalize (log2_nonneg a); order). rewrite land_ones; trivial. apply mod_small. split; trivial. apply log2_lt_cancel. now rewrite log2_pow2. Qed. Lemma ldiff_ones_r : forall a n, 0<=n -> ldiff a (ones n) == (a >> n) << n. Proof. intros a n Hn. bitwise. destruct (le_gt_cases n m). rewrite ones_spec_high, shiftl_spec_high, shiftr_spec; trivial. rewrite sub_add; trivial. apply andb_true_r. now apply le_0_sub. now split. rewrite ones_spec_low, shiftl_spec_low, andb_false_r; try split; trivial. Qed. Lemma ldiff_ones_r_low : forall a n, 0<=a -> log2 a < n -> ldiff a (ones n) == 0. Proof. intros a n Ha H. bitwise. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. split; trivial. now apply le_trans with (log2 a); order_pos. rewrite ones_spec_low, andb_false_r; try split; trivial. Qed. Lemma ldiff_ones_l_low : forall a n, 0<=a -> log2 a < n -> ldiff (ones n) a == lxor a (ones n). Proof. intros a n Ha H. bitwise. destruct (le_gt_cases n m). rewrite ones_spec_high, bits_above_log2; trivial. now apply lt_le_trans with n. split; trivial. now apply le_trans with (log2 a); order_pos. rewrite ones_spec_low, xorb_true_r; try split; trivial. Qed. (** Bitwise operations and sign *) Lemma shiftl_nonneg : forall a n, 0 <= (a << n) <-> 0 <= a. Proof. intros a n. destruct (le_ge_cases 0 n) as [Hn|Hn]. (* 0<=n *) rewrite 2 bits_iff_nonneg_ex. split; intros (k,Hk). exists (k-n). intros m Hm. destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r]. rewrite <- (add_simpl_r m n), <- (shiftl_spec a n) by order_pos. apply Hk. now apply lt_sub_lt_add_r. exists (k+n). intros m Hm. destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r]. rewrite shiftl_spec by trivial. apply Hk. now apply lt_add_lt_sub_r. (* n<=0*) rewrite <- shiftr_opp_r, 2 bits_iff_nonneg_ex. split; intros (k,Hk). destruct (le_gt_cases 0 k). exists (k-n). intros m Hm. apply lt_sub_lt_add_r in Hm. rewrite <- (add_simpl_r m n), <- add_opp_r, <- (shiftr_spec a (-n)). now apply Hk. order. assert (EQ : a >> (-n) == 0). apply bits_inj'. intros m Hm. rewrite bits_0. apply Hk; order. apply shiftr_eq_0_iff in EQ. rewrite <- bits_iff_nonneg_ex. destruct EQ as [EQ|[LT _]]; order. exists (k+n). intros m Hm. destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r]. rewrite shiftr_spec by trivial. apply Hk. rewrite add_opp_r. now apply lt_add_lt_sub_r. Qed. Lemma shiftl_neg : forall a n, (a << n) < 0 <-> a < 0. Proof. intros a n. now rewrite 2 lt_nge, shiftl_nonneg. Qed. Lemma shiftr_nonneg : forall a n, 0 <= (a >> n) <-> 0 <= a. Proof. intros. rewrite <- shiftl_opp_r. apply shiftl_nonneg. Qed. Lemma shiftr_neg : forall a n, (a >> n) < 0 <-> a < 0. Proof. intros a n. now rewrite 2 lt_nge, shiftr_nonneg. Qed. Lemma div2_nonneg : forall a, 0 <= div2 a <-> 0 <= a. Proof. intros. rewrite div2_spec. apply shiftr_nonneg. Qed. Lemma div2_neg : forall a, div2 a < 0 <-> a < 0. Proof. intros a. now rewrite 2 lt_nge, div2_nonneg. Qed. Lemma lor_nonneg : forall a b, 0 <= lor a b <-> 0<=a /\ 0<=b. Proof. intros a b. rewrite 3 bits_iff_nonneg_ex. split. intros (k,Hk). split; exists k; intros m Hm; apply (orb_false_elim a.[m] b.[m]); rewrite <- lor_spec; now apply Hk. intros ((k,Hk),(k',Hk')). destruct (le_ge_cases k k'); [ exists k' | exists k ]; intros m Hm; rewrite lor_spec, Hk, Hk'; trivial; order. Qed. Lemma lor_neg : forall a b, lor a b < 0 <-> a < 0 \/ b < 0. Proof. intros a b. rewrite 3 lt_nge, lor_nonneg. split. apply not_and. apply le_decidable. now intros [H|H] (H',H''). Qed. Lemma lnot_nonneg : forall a, 0 <= lnot a <-> a < 0. Proof. intros a; unfold lnot. now rewrite <- opp_succ, opp_nonneg_nonpos, le_succ_l. Qed. Lemma lnot_neg : forall a, lnot a < 0 <-> 0 <= a. Proof. intros a. now rewrite le_ngt, lt_nge, lnot_nonneg. Qed. Lemma land_nonneg : forall a b, 0 <= land a b <-> 0<=a \/ 0<=b. Proof. intros a b. now rewrite <- (lnot_involutive (land a b)), lnot_land, lnot_nonneg, lor_neg, !lnot_neg. Qed. Lemma land_neg : forall a b, land a b < 0 <-> a < 0 /\ b < 0. Proof. intros a b. now rewrite <- (lnot_involutive (land a b)), lnot_land, lnot_neg, lor_nonneg, !lnot_nonneg. Qed. Lemma ldiff_nonneg : forall a b, 0 <= ldiff a b <-> 0<=a \/ b<0. Proof. intros. now rewrite ldiff_land, land_nonneg, lnot_nonneg. Qed. Lemma ldiff_neg : forall a b, ldiff a b < 0 <-> a<0 /\ 0<=b. Proof. intros. now rewrite ldiff_land, land_neg, lnot_neg. Qed. Lemma lxor_nonneg : forall a b, 0 <= lxor a b <-> (0<=a <-> 0<=b). Proof. assert (H : forall a b, 0<=a -> 0<=b -> 0<=lxor a b). intros a b. rewrite 3 bits_iff_nonneg_ex. intros (k,Hk) (k', Hk'). destruct (le_ge_cases k k'); [ exists k' | exists k]; intros m Hm; rewrite lxor_spec, Hk, Hk'; trivial; order. assert (H' : forall a b, 0<=a -> b<0 -> lxor a b<0). intros a b. rewrite bits_iff_nonneg_ex, 2 bits_iff_neg_ex. intros (k,Hk) (k', Hk'). destruct (le_ge_cases k k'); [ exists k' | exists k]; intros m Hm; rewrite lxor_spec, Hk, Hk'; trivial; order. intros a b. split. intros Hab. split. intros Ha. destruct (le_gt_cases 0 b) as [Hb|Hb]; trivial. generalize (H' _ _ Ha Hb). order. intros Hb. destruct (le_gt_cases 0 a) as [Ha|Ha]; trivial. generalize (H' _ _ Hb Ha). rewrite lxor_comm. order. intros E. destruct (le_gt_cases 0 a) as [Ha|Ha]. apply H; trivial. apply E; trivial. destruct (le_gt_cases 0 b) as [Hb|Hb]. apply H; trivial. apply E; trivial. rewrite <- lxor_lnot_lnot. apply H; now apply lnot_nonneg. Qed. (** Bitwise operations and log2 *) Lemma log2_bits_unique : forall a n, a.[n] = true -> (forall m, n a.[m] = false) -> log2 a == n. Proof. intros a n H H'. destruct (lt_trichotomy a 0) as [Ha|[Ha|Ha]]. (* a < 0 *) destruct (proj1 (bits_iff_neg_ex a) Ha) as (k,Hk). destruct (le_gt_cases n k). specialize (Hk (S k) (lt_succ_diag_r _)). rewrite H' in Hk. discriminate. apply lt_succ_r; order. specialize (H' (S n) (lt_succ_diag_r _)). rewrite Hk in H'. discriminate. apply lt_succ_r; order. (* a = 0 *) now rewrite Ha, bits_0 in H. (* 0 < a *) apply le_antisymm; apply le_ngt; intros LT. specialize (H' _ LT). now rewrite bit_log2 in H'. now rewrite bits_above_log2 in H by order. Qed. Lemma log2_shiftr : forall a n, 0 log2 (a >> n) == max 0 (log2 a - n). Proof. intros a n Ha. destruct (le_gt_cases 0 (log2 a - n)); [rewrite max_r | rewrite max_l]; try order. apply log2_bits_unique. now rewrite shiftr_spec, sub_add, bit_log2. intros m Hm. destruct (le_gt_cases 0 m); [|now rewrite testbit_neg_r]. rewrite shiftr_spec; trivial. apply bits_above_log2; try order. now apply lt_sub_lt_add_r. rewrite lt_sub_lt_add_r, add_0_l in H. apply log2_nonpos. apply le_lteq; right. apply shiftr_eq_0_iff. right. now split. Qed. Lemma log2_shiftl : forall a n, 0 0<=n -> log2 (a << n) == log2 a + n. Proof. intros a n Ha Hn. rewrite shiftl_mul_pow2, add_comm by trivial. now apply log2_mul_pow2. Qed. Lemma log2_shiftl' : forall a n, 0 log2 (a << n) == max 0 (log2 a + n). Proof. intros a n Ha. rewrite <- shiftr_opp_r, log2_shiftr by trivial. destruct (le_gt_cases 0 (log2 a + n)); [rewrite 2 max_r | rewrite 2 max_l]; rewrite ?sub_opp_r; try order. Qed. Lemma log2_lor : forall a b, 0<=a -> 0<=b -> log2 (lor a b) == max (log2 a) (log2 b). Proof. assert (AUX : forall a b, 0<=a -> a<=b -> log2 (lor a b) == log2 b). intros a b Ha H. le_elim Ha; [|now rewrite <- Ha, lor_0_l]. apply log2_bits_unique. now rewrite lor_spec, bit_log2, orb_true_r by order. intros m Hm. assert (H' := log2_le_mono _ _ H). now rewrite lor_spec, 2 bits_above_log2 by order. (* main *) intros a b Ha Hb. destruct (le_ge_cases a b) as [H|H]. rewrite max_r by now apply log2_le_mono. now apply AUX. rewrite max_l by now apply log2_le_mono. rewrite lor_comm. now apply AUX. Qed. Lemma log2_land : forall a b, 0<=a -> 0<=b -> log2 (land a b) <= min (log2 a) (log2 b). Proof. assert (AUX : forall a b, 0<=a -> a<=b -> log2 (land a b) <= log2 a). intros a b Ha Hb. apply le_ngt. intros LT. assert (H : 0 <= land a b) by (apply land_nonneg; now left). le_elim H. generalize (bit_log2 (land a b) H). now rewrite land_spec, bits_above_log2. rewrite <- H in LT. apply log2_lt_cancel in LT; order. (* main *) intros a b Ha Hb. destruct (le_ge_cases a b) as [H|H]. rewrite min_l by now apply log2_le_mono. now apply AUX. rewrite min_r by now apply log2_le_mono. rewrite land_comm. now apply AUX. Qed. Lemma log2_lxor : forall a b, 0<=a -> 0<=b -> log2 (lxor a b) <= max (log2 a) (log2 b). Proof. assert (AUX : forall a b, 0<=a -> a<=b -> log2 (lxor a b) <= log2 b). intros a b Ha Hb. apply le_ngt. intros LT. assert (H : 0 <= lxor a b) by (apply lxor_nonneg; split; order). le_elim H. generalize (bit_log2 (lxor a b) H). rewrite lxor_spec, 2 bits_above_log2; try order. discriminate. apply le_lt_trans with (log2 b); trivial. now apply log2_le_mono. rewrite <- H in LT. apply log2_lt_cancel in LT; order. (* main *) intros a b Ha Hb. destruct (le_ge_cases a b) as [H|H]. rewrite max_r by now apply log2_le_mono. now apply AUX. rewrite max_l by now apply log2_le_mono. rewrite lxor_comm. now apply AUX. Qed. (** Bitwise operations and arithmetical operations *) Local Notation xor3 a b c := (xorb (xorb a b) c). Local Notation lxor3 a b c := (lxor (lxor a b) c). Local Notation nextcarry a b c := ((a&&b) || (c && (a||b))). Local Notation lnextcarry a b c := (lor (land a b) (land c (lor a b))). Lemma add_bit0 : forall a b, (a+b).[0] = xorb a.[0] b.[0]. Proof. intros. now rewrite !bit0_odd, odd_add. Qed. Lemma add3_bit0 : forall a b c, (a+b+c).[0] = xor3 a.[0] b.[0] c.[0]. Proof. intros. now rewrite !add_bit0. Qed. Lemma add3_bits_div2 : forall (a0 b0 c0 : bool), (a0 + b0 + c0)/2 == nextcarry a0 b0 c0. Proof. assert (H : 1+1 == 2) by now nzsimpl'. intros [|] [|] [|]; simpl; rewrite ?add_0_l, ?add_0_r, ?H; (apply div_same; order') || (apply div_small; split; order') || idtac. symmetry. apply div_unique with 1. left; split; order'. now nzsimpl'. Qed. Lemma add_carry_div2 : forall a b (c0:bool), (a + b + c0)/2 == a/2 + b/2 + nextcarry a.[0] b.[0] c0. Proof. intros. rewrite <- add3_bits_div2. rewrite (add_comm ((a/2)+_)). rewrite <- div_add by order'. f_equiv. rewrite <- !div2_div, mul_comm, mul_add_distr_l. rewrite (div2_odd a), <- bit0_odd at 1. rewrite (div2_odd b), <- bit0_odd at 1. rewrite add_shuffle1. rewrite <-(add_assoc _ _ c0). apply add_comm. Qed. (** The main result concerning addition: we express the bits of the sum in term of bits of [a] and [b] and of some carry stream which is also recursively determined by another equation. *) Lemma add_carry_bits_aux : forall n, 0<=n -> forall a b (c0:bool), -(2^n) <= a < 2^n -> -(2^n) <= b < 2^n -> exists c, a+b+c0 == lxor3 a b c /\ c/2 == lnextcarry a b c /\ c.[0] = c0. Proof. intros n Hn. apply le_ind with (4:=Hn). solve_proper. (* base *) intros a b c0. rewrite !pow_0_r, !one_succ, !lt_succ_r, <- !one_succ. intros (Ha1,Ha2) (Hb1,Hb2). le_elim Ha1; rewrite <- ?le_succ_l, ?succ_m1 in Ha1; le_elim Hb1; rewrite <- ?le_succ_l, ?succ_m1 in Hb1. (* base, a = 0, b = 0 *) exists c0. rewrite (le_antisymm _ _ Ha2 Ha1), (le_antisymm _ _ Hb2 Hb1). rewrite !add_0_l, !lxor_0_l, !lor_0_r, !land_0_r, !lor_0_r. rewrite b2z_div2, b2z_bit0; now repeat split. (* base, a = 0, b = -1 *) exists (-c0). rewrite <- Hb1, (le_antisymm _ _ Ha2 Ha1). repeat split. rewrite add_0_l, lxor_0_l, lxor_m1_l. unfold lnot. now rewrite opp_involutive, add_comm, add_opp_r, sub_1_r. rewrite land_0_l, !lor_0_l, land_m1_r. symmetry. apply div_unique with c0. left; destruct c0; simpl; split; order'. now rewrite two_succ, mul_succ_l, mul_1_l, add_opp_r, sub_add. rewrite bit0_odd, odd_opp; destruct c0; simpl; apply odd_1 || apply odd_0. (* base, a = -1, b = 0 *) exists (-c0). rewrite <- Ha1, (le_antisymm _ _ Hb2 Hb1). repeat split. rewrite add_0_r, lxor_0_r, lxor_m1_l. unfold lnot. now rewrite opp_involutive, add_comm, add_opp_r, sub_1_r. rewrite land_0_r, lor_0_r, lor_0_l, land_m1_r. symmetry. apply div_unique with c0. left; destruct c0; simpl; split; order'. now rewrite two_succ, mul_succ_l, mul_1_l, add_opp_r, sub_add. rewrite bit0_odd, odd_opp; destruct c0; simpl; apply odd_1 || apply odd_0. (* base, a = -1, b = -1 *) exists (c0 + 2*(-1)). rewrite <- Ha1, <- Hb1. repeat split. rewrite lxor_m1_l, lnot_m1, lxor_0_l. now rewrite two_succ, mul_succ_l, mul_1_l, add_comm, add_assoc. rewrite land_m1_l, lor_m1_l. apply add_b2z_double_div2. apply add_b2z_double_bit0. (* step *) clear n Hn. intros n Hn IH a b c0 Ha Hb. set (c1:=nextcarry a.[0] b.[0] c0). destruct (IH (a/2) (b/2) c1) as (c & IH1 & IH2 & Hc); clear IH. split. apply div_le_lower_bound. order'. now rewrite mul_opp_r, <- pow_succ_r. apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r. split. apply div_le_lower_bound. order'. now rewrite mul_opp_r, <- pow_succ_r. apply div_lt_upper_bound. order'. now rewrite <- pow_succ_r. exists (c0 + 2*c). repeat split. (* step, add *) bitwise. le_elim Hm. rewrite <- (succ_pred m), lt_succ_r in Hm. rewrite <- (succ_pred m), <- !div2_bits, <- 2 lxor_spec by trivial. f_equiv. rewrite add_b2z_double_div2, <- IH1. apply add_carry_div2. rewrite <- Hm. now rewrite add_b2z_double_bit0, add3_bit0, b2z_bit0. (* step, carry *) rewrite add_b2z_double_div2. bitwise. le_elim Hm. rewrite <- (succ_pred m), lt_succ_r in Hm. rewrite <- (succ_pred m), <- !div2_bits, IH2 by trivial. autorewrite with bitwise. now rewrite add_b2z_double_div2. rewrite <- Hm. now rewrite add_b2z_double_bit0. (* step, carry0 *) apply add_b2z_double_bit0. Qed. Lemma add_carry_bits : forall a b (c0:bool), exists c, a+b+c0 == lxor3 a b c /\ c/2 == lnextcarry a b c /\ c.[0] = c0. Proof. intros a b c0. set (n := max (abs a) (abs b)). apply (add_carry_bits_aux n). (* positivity *) unfold n. destruct (le_ge_cases (abs a) (abs b)); [rewrite max_r|rewrite max_l]; order_pos'. (* bound for a *) assert (Ha : abs a < 2^n). apply lt_le_trans with (2^(abs a)). apply pow_gt_lin_r; order_pos'. apply pow_le_mono_r. order'. unfold n. destruct (le_ge_cases (abs a) (abs b)); [rewrite max_r|rewrite max_l]; try order. apply abs_lt in Ha. destruct Ha; split; order. (* bound for b *) assert (Hb : abs b < 2^n). apply lt_le_trans with (2^(abs b)). apply pow_gt_lin_r; order_pos'. apply pow_le_mono_r. order'. unfold n. destruct (le_ge_cases (abs a) (abs b)); [rewrite max_r|rewrite max_l]; try order. apply abs_lt in Hb. destruct Hb; split; order. Qed. (** Particular case : the second bit of an addition *) Lemma add_bit1 : forall a b, (a+b).[1] = xor3 a.[1] b.[1] (a.[0] && b.[0]). Proof. intros a b. destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc). simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1. autorewrite with bitwise. f_equal. rewrite one_succ, <- div2_bits, EQ2 by order. autorewrite with bitwise. rewrite Hc. simpl. apply orb_false_r. Qed. (** In an addition, there will be no carries iff there is no common bits in the numbers to add *) Lemma nocarry_equiv : forall a b c, c/2 == lnextcarry a b c -> c.[0] = false -> (c == 0 <-> land a b == 0). Proof. intros a b c H H'. split. intros EQ; rewrite EQ in *. rewrite div_0_l in H by order'. symmetry in H. now apply lor_eq_0_l in H. intros EQ. rewrite EQ, lor_0_l in H. apply bits_inj'. intros n Hn. rewrite bits_0. apply le_ind with (4:=Hn). solve_proper. trivial. clear n Hn. intros n Hn IH. rewrite <- div2_bits, H; trivial. autorewrite with bitwise. now rewrite IH. Qed. (** When there is no common bits, the addition is just a xor *) Lemma add_nocarry_lxor : forall a b, land a b == 0 -> a+b == lxor a b. Proof. intros a b H. destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc). simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1. apply (nocarry_equiv a b c) in H; trivial. rewrite H. now rewrite lxor_0_r. Qed. (** A null [ldiff] implies being smaller *) Lemma ldiff_le : forall a b, 0<=b -> ldiff a b == 0 -> 0 <= a <= b. Proof. assert (AUX : forall n, 0<=n -> forall a b, 0 <= a < 2^n -> 0<=b -> ldiff a b == 0 -> a <= b). intros n Hn. apply le_ind with (4:=Hn); clear n Hn. solve_proper. intros a b Ha Hb _. rewrite pow_0_r, one_succ, lt_succ_r in Ha. setoid_replace a with 0 by (destruct Ha; order'); trivial. intros n Hn IH a b (Ha,Ha') Hb H. assert (NEQ : 2 ~= 0) by order'. rewrite (div_mod a 2 NEQ), (div_mod b 2 NEQ). apply add_le_mono. apply mul_le_mono_pos_l; try order'. apply IH. split. apply div_pos; order'. apply div_lt_upper_bound; try order'. now rewrite <- pow_succ_r. apply div_pos; order'. rewrite <- (pow_1_r 2), <- 2 shiftr_div_pow2 by order'. rewrite <- shiftr_ldiff, H, shiftr_div_pow2, pow_1_r, div_0_l; order'. rewrite <- 2 bit0_mod. apply bits_inj_iff in H. specialize (H 0). rewrite ldiff_spec, bits_0 in H. destruct a.[0], b.[0]; try discriminate; simpl; order'. (* main *) intros a b Hb Hd. assert (Ha : 0<=a). apply le_ngt; intros Ha'. apply (lt_irrefl 0). rewrite <- Hd at 1. apply ldiff_neg. now split. split; trivial. apply (AUX a); try split; trivial. apply pow_gt_lin_r; order'. Qed. (** Subtraction can be a ldiff when the opposite ldiff is null. *) Lemma sub_nocarry_ldiff : forall a b, ldiff b a == 0 -> a-b == ldiff a b. Proof. intros a b H. apply add_cancel_r with b. rewrite sub_add. symmetry. rewrite add_nocarry_lxor; trivial. bitwise. apply bits_inj_iff in H. specialize (H m). rewrite ldiff_spec, bits_0 in H. now destruct a.[m], b.[m]. apply land_ldiff. Qed. (** Adding numbers with no common bits cannot lead to a much bigger number *) Lemma add_nocarry_lt_pow2 : forall a b n, land a b == 0 -> a < 2^n -> b < 2^n -> a+b < 2^n. Proof. intros a b n H Ha Hb. destruct (le_gt_cases a 0) as [Ha'|Ha']. apply le_lt_trans with (0+b). now apply add_le_mono_r. now nzsimpl. destruct (le_gt_cases b 0) as [Hb'|Hb']. apply le_lt_trans with (a+0). now apply add_le_mono_l. now nzsimpl. rewrite add_nocarry_lxor by order. destruct (lt_ge_cases 0 (lxor a b)); [|apply le_lt_trans with 0; order_pos]. apply log2_lt_pow2; trivial. apply log2_lt_pow2 in Ha; trivial. apply log2_lt_pow2 in Hb; trivial. apply le_lt_trans with (max (log2 a) (log2 b)). apply log2_lxor; order. destruct (le_ge_cases (log2 a) (log2 b)); [rewrite max_r|rewrite max_l]; order. Qed. Lemma add_nocarry_mod_lt_pow2 : forall a b n, 0<=n -> land a b == 0 -> a mod 2^n + b mod 2^n < 2^n. Proof. intros a b n Hn H. apply add_nocarry_lt_pow2. bitwise. destruct (le_gt_cases n m). rewrite mod_pow2_bits_high; now split. now rewrite !mod_pow2_bits_low, <- land_spec, H, bits_0. apply mod_pos_bound; order_pos. apply mod_pos_bound; order_pos. Qed. End ZBitsProp.