(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n == m. Proof. intros n m H. apply opp_wd in H. now rewrite 2 opp_involutive in H. Qed. Theorem opp_inj_wd : forall n m, - n == - m <-> n == m. Proof. intros n m; split; [apply opp_inj | intros; now f_equiv]. Qed. Theorem eq_opp_l : forall n m, - n == m <-> n == - m. Proof. intros n m. now rewrite <- (opp_inj_wd (- n) m), opp_involutive. Qed. Theorem eq_opp_r : forall n m, n == - m <-> - n == m. Proof. symmetry; apply eq_opp_l. Qed. Theorem sub_add_distr : forall n m p, n - (m + p) == (n - m) - p. Proof. intros n m p; rewrite <- add_opp_r, opp_add_distr, add_assoc. now rewrite 2 add_opp_r. Qed. Theorem sub_sub_distr : forall n m p, n - (m - p) == (n - m) + p. Proof. intros n m p; rewrite <- add_opp_r, opp_sub_distr, add_assoc. now rewrite add_opp_r. Qed. Theorem sub_opp_l : forall n m, - n - m == - m - n. Proof. intros n m. rewrite <- 2 add_opp_r. now rewrite add_comm. Qed. Theorem sub_opp_r : forall n m, n - (- m) == n + m. Proof. intros n m; rewrite <- add_opp_r; now rewrite opp_involutive. Qed. Theorem add_sub_swap : forall n m p, n + m - p == n - p + m. Proof. intros n m p. rewrite <- add_sub_assoc, <- (add_opp_r n p), <- add_assoc. now rewrite add_opp_l. Qed. Theorem sub_cancel_l : forall n m p, n - m == n - p <-> m == p. Proof. intros n m p. rewrite <- (add_cancel_l (n - m) (n - p) (- n)). rewrite 2 add_sub_assoc. rewrite add_opp_diag_l; rewrite 2 sub_0_l. apply opp_inj_wd. Qed. Theorem sub_cancel_r : forall n m p, n - p == m - p <-> n == m. Proof. intros n m p. stepl (n - p + p == m - p + p) by apply add_cancel_r. now do 2 rewrite <- sub_sub_distr, sub_diag, sub_0_r. Qed. (** The next several theorems are devoted to moving terms from one side of an equation to the other. The name contains the operation in the original equation ([add] or [sub]) and the indication whether the left or right term is moved. *) Theorem add_move_l : forall n m p, n + m == p <-> m == p - n. Proof. intros n m p. stepl (n + m - n == p - n) by apply sub_cancel_r. now rewrite add_comm, <- add_sub_assoc, sub_diag, add_0_r. Qed. Theorem add_move_r : forall n m p, n + m == p <-> n == p - m. Proof. intros n m p; rewrite add_comm; now apply add_move_l. Qed. (** The two theorems above do not allow rewriting subformulas of the form [n - m == p] to [n == p + m] since subtraction is in the right-hand side of the equation. Hence the following two theorems. *) Theorem sub_move_l : forall n m p, n - m == p <-> - m == p - n. Proof. intros n m p; rewrite <- (add_opp_r n m); apply add_move_l. Qed. Theorem sub_move_r : forall n m p, n - m == p <-> n == p + m. Proof. intros n m p; rewrite <- (add_opp_r n m). now rewrite add_move_r, sub_opp_r. Qed. Theorem add_move_0_l : forall n m, n + m == 0 <-> m == - n. Proof. intros n m; now rewrite add_move_l, sub_0_l. Qed. Theorem add_move_0_r : forall n m, n + m == 0 <-> n == - m. Proof. intros n m; now rewrite add_move_r, sub_0_l. Qed. Theorem sub_move_0_l : forall n m, n - m == 0 <-> - m == - n. Proof. intros n m. now rewrite sub_move_l, sub_0_l. Qed. Theorem sub_move_0_r : forall n m, n - m == 0 <-> n == m. Proof. intros n m. now rewrite sub_move_r, add_0_l. Qed. (** The following section is devoted to cancellation of like terms. The name includes the first operator and the position of the term being canceled. *) Theorem add_simpl_l : forall n m, n + m - n == m. Proof. intros; now rewrite add_sub_swap, sub_diag, add_0_l. Qed. Theorem add_simpl_r : forall n m, n + m - m == n. Proof. intros; now rewrite <- add_sub_assoc, sub_diag, add_0_r. Qed. Theorem sub_simpl_l : forall n m, - n - m + n == - m. Proof. intros; now rewrite <- add_sub_swap, add_opp_diag_l, sub_0_l. Qed. Theorem sub_simpl_r : forall n m, n - m + m == n. Proof. intros; now rewrite <- sub_sub_distr, sub_diag, sub_0_r. Qed. Theorem sub_add : forall n m, m - n + n == m. Proof. intros. now rewrite <- add_sub_swap, add_simpl_r. Qed. (** Now we have two sums or differences; the name includes the two operators and the position of the terms being canceled *) Theorem add_add_simpl_l_l : forall n m p, (n + m) - (n + p) == m - p. Proof. intros n m p. now rewrite (add_comm n m), <- add_sub_assoc, sub_add_distr, sub_diag, sub_0_l, add_opp_r. Qed. Theorem add_add_simpl_l_r : forall n m p, (n + m) - (p + n) == m - p. Proof. intros n m p. rewrite (add_comm p n); apply add_add_simpl_l_l. Qed. Theorem add_add_simpl_r_l : forall n m p, (n + m) - (m + p) == n - p. Proof. intros n m p. rewrite (add_comm n m); apply add_add_simpl_l_l. Qed. Theorem add_add_simpl_r_r : forall n m p, (n + m) - (p + m) == n - p. Proof. intros n m p. rewrite (add_comm p m); apply add_add_simpl_r_l. Qed. Theorem sub_add_simpl_r_l : forall n m p, (n - m) + (m + p) == n + p. Proof. intros n m p. now rewrite <- sub_sub_distr, sub_add_distr, sub_diag, sub_0_l, sub_opp_r. Qed. Theorem sub_add_simpl_r_r : forall n m p, (n - m) + (p + m) == n + p. Proof. intros n m p. rewrite (add_comm p m); apply sub_add_simpl_r_l. Qed. (** Of course, there are many other variants *) End ZAddProp.