(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 1%positive. Definition wB := base digits. Definition znz := Z. Definition znz_digits := digits. Definition znz_zdigits := Zpos digits. Definition znz_to_Z x := x mod wB. Notation "[| x |]" := (znz_to_Z x) (at level 0, x at level 99). Notation "[+| c |]" := (interp_carry 1 wB znz_to_Z c) (at level 0, x at level 99). Notation "[-| c |]" := (interp_carry (-1) wB znz_to_Z c) (at level 0, x at level 99). Notation "[|| x ||]" := (zn2z_to_Z wB znz_to_Z x) (at level 0, x at level 99). Lemma spec_more_than_1_digit: 1 < Zpos digits. Proof. unfold znz_digits. generalize digits_ne_1; destruct digits; auto. destruct 1; auto. Qed. Let digits_gt_1 := spec_more_than_1_digit. Lemma wB_pos : wB > 0. Proof. unfold wB, base; auto with zarith. Qed. Hint Resolve wB_pos. Lemma spec_to_Z_1 : forall x, 0 <= [|x|]. Proof. unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto. Qed. Lemma spec_to_Z_2 : forall x, [|x|] < wB. Proof. unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto. Qed. Hint Resolve spec_to_Z_1 spec_to_Z_2. Lemma spec_to_Z : forall x, 0 <= [|x|] < wB. Proof. auto. Qed. Definition znz_of_pos x := let (q,r) := Zdiv_eucl_POS x wB in (N_of_Z q, r). Lemma spec_of_pos : forall p, Zpos p = (Z_of_N (fst (znz_of_pos p)))*wB + [|(snd (znz_of_pos p))|]. Proof. intros; unfold znz_of_pos; simpl. generalize (Z_div_mod_POS wB wB_pos p). destruct (Zdiv_eucl_POS p wB); simpl; destruct 1. unfold znz_to_Z; rewrite Zmod_small; auto. assert (0 <= z). replace z with (Zpos p / wB) by (symmetry; apply Zdiv_unique with z0; auto). apply Z_div_pos; auto with zarith. replace (Z_of_N (N_of_Z z)) with z by (destruct z; simpl; auto; elim H1; auto). rewrite Zmult_comm; auto. Qed. Lemma spec_zdigits : [|znz_zdigits|] = Zpos znz_digits. Proof. unfold znz_to_Z, znz_zdigits, znz_digits. apply Zmod_small. unfold wB, base. split; auto with zarith. apply Zpower2_lt_lin; auto with zarith. Qed. Definition znz_0 := 0. Definition znz_1 := 1. Definition znz_Bm1 := wB - 1. Lemma spec_0 : [|znz_0|] = 0. Proof. unfold znz_to_Z, znz_0. apply Zmod_small; generalize wB_pos; auto with zarith. Qed. Lemma spec_1 : [|znz_1|] = 1. Proof. unfold znz_to_Z, znz_1. apply Zmod_small; split; auto with zarith. unfold wB, base. apply Zlt_trans with (Zpos digits); auto. apply Zpower2_lt_lin; auto with zarith. Qed. Lemma spec_Bm1 : [|znz_Bm1|] = wB - 1. Proof. unfold znz_to_Z, znz_Bm1. apply Zmod_small; split; auto with zarith. unfold wB, base. cut (1 <= 2 ^ Zpos digits); auto with zarith. apply Zle_trans with (Zpos digits); auto with zarith. apply Zpower2_le_lin; auto with zarith. Qed. Definition znz_compare x y := Zcompare [|x|] [|y|]. Lemma spec_compare : forall x y, match znz_compare x y with | Eq => [|x|] = [|y|] | Lt => [|x|] < [|y|] | Gt => [|x|] > [|y|] end. Proof. intros; unfold znz_compare, Zlt, Zgt. case_eq (Zcompare [|x|] [|y|]); auto. intros; apply Zcompare_Eq_eq; auto. Qed. Definition znz_eq0 x := match [|x|] with Z0 => true | _ => false end. Lemma spec_eq0 : forall x, znz_eq0 x = true -> [|x|] = 0. Proof. unfold znz_eq0; intros; now destruct [|x|]. Qed. Definition znz_opp_c x := if znz_eq0 x then C0 0 else C1 (- x). Definition znz_opp x := - x. Definition znz_opp_carry x := - x - 1. Lemma spec_opp_c : forall x, [-|znz_opp_c x|] = -[|x|]. Proof. intros; unfold znz_opp_c, znz_to_Z; auto. case_eq (znz_eq0 x); intros; unfold interp_carry. fold [|x|]; rewrite (spec_eq0 x H); auto. assert (x mod wB <> 0). unfold znz_eq0, znz_to_Z in H. intro H0; rewrite H0 in H; discriminate. rewrite Z_mod_nz_opp_full; auto with zarith. Qed. Lemma spec_opp : forall x, [|znz_opp x|] = (-[|x|]) mod wB. Proof. intros; unfold znz_opp, znz_to_Z; auto. change ((- x) mod wB = (0 - (x mod wB)) mod wB). rewrite Zminus_mod_idemp_r; simpl; auto. Qed. Lemma spec_opp_carry : forall x, [|znz_opp_carry x|] = wB - [|x|] - 1. Proof. intros; unfold znz_opp_carry, znz_to_Z; auto. replace (- x - 1) with (- 1 - x) by omega. rewrite <- Zminus_mod_idemp_r. replace ( -1 - x mod wB) with (0 + ( -1 - x mod wB)) by omega. rewrite <- (Z_mod_same_full wB). rewrite Zplus_mod_idemp_l. replace (wB + (-1 - x mod wB)) with (wB - x mod wB -1) by omega. apply Zmod_small. generalize (Z_mod_lt x wB wB_pos); omega. Qed. Definition znz_succ_c x := let y := Zsucc x in if znz_eq0 y then C1 0 else C0 y. Definition znz_add_c x y := let z := [|x|] + [|y|] in if Z_lt_le_dec z wB then C0 z else C1 (z-wB). Definition znz_add_carry_c x y := let z := [|x|]+[|y|]+1 in if Z_lt_le_dec z wB then C0 z else C1 (z-wB). Definition znz_succ := Zsucc. Definition znz_add := Zplus. Definition znz_add_carry x y := x + y + 1. Lemma Zmod_equal : forall x y z, z>0 -> (x-y) mod z = 0 -> x mod z = y mod z. Proof. intros. generalize (Z_div_mod_eq (x-y) z H); rewrite H0, Zplus_0_r. remember ((x-y)/z) as k. intros H1; symmetry in H1; rewrite <- Zeq_plus_swap in H1. subst x. rewrite Zplus_comm, Zmult_comm, Z_mod_plus; auto. Qed. Lemma spec_succ_c : forall x, [+|znz_succ_c x|] = [|x|] + 1. Proof. intros; unfold znz_succ_c, znz_to_Z, Zsucc. case_eq (znz_eq0 (x+1)); intros; unfold interp_carry. rewrite Zmult_1_l. replace (wB + 0 mod wB) with wB by auto with zarith. symmetry; rewrite Zeq_plus_swap. assert ((x+1) mod wB = 0) by (apply spec_eq0; auto). replace (wB-1) with ((wB-1) mod wB) by (apply Zmod_small; generalize wB_pos; omega). rewrite <- Zminus_mod_idemp_l; rewrite Z_mod_same; simpl; auto. apply Zmod_equal; auto. assert ((x+1) mod wB <> 0). unfold znz_eq0, znz_to_Z in *; now destruct ((x+1) mod wB). assert (x mod wB + 1 <> wB). contradict H0. rewrite Zeq_plus_swap in H0; simpl in H0. rewrite <- Zplus_mod_idemp_l; rewrite H0. replace (wB-1+1) with wB; auto with zarith; apply Z_mod_same; auto. rewrite <- Zplus_mod_idemp_l. apply Zmod_small. generalize (Z_mod_lt x wB wB_pos); omega. Qed. Lemma spec_add_c : forall x y, [+|znz_add_c x y|] = [|x|] + [|y|]. Proof. intros; unfold znz_add_c, znz_to_Z, interp_carry. destruct Z_lt_le_dec. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. Qed. Lemma spec_add_carry_c : forall x y, [+|znz_add_carry_c x y|] = [|x|] + [|y|] + 1. Proof. intros; unfold znz_add_carry_c, znz_to_Z, interp_carry. destruct Z_lt_le_dec. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap. apply Zmod_small; generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. Qed. Lemma spec_succ : forall x, [|znz_succ x|] = ([|x|] + 1) mod wB. Proof. intros; unfold znz_succ, znz_to_Z, Zsucc. symmetry; apply Zplus_mod_idemp_l. Qed. Lemma spec_add : forall x y, [|znz_add x y|] = ([|x|] + [|y|]) mod wB. Proof. intros; unfold znz_add, znz_to_Z; apply Zplus_mod. Qed. Lemma spec_add_carry : forall x y, [|znz_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB. Proof. intros; unfold znz_add_carry, znz_to_Z. rewrite <- Zplus_mod_idemp_l. rewrite (Zplus_mod x y). rewrite Zplus_mod_idemp_l; auto. Qed. Definition znz_pred_c x := if znz_eq0 x then C1 (wB-1) else C0 (x-1). Definition znz_sub_c x y := let z := [|x|]-[|y|] in if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z. Definition znz_sub_carry_c x y := let z := [|x|]-[|y|]-1 in if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z. Definition znz_pred := Zpred. Definition znz_sub := Zminus. Definition znz_sub_carry x y := x - y - 1. Lemma spec_pred_c : forall x, [-|znz_pred_c x|] = [|x|] - 1. Proof. intros; unfold znz_pred_c, znz_to_Z, interp_carry. case_eq (znz_eq0 x); intros. fold [|x|]; rewrite spec_eq0; auto. replace ((wB-1) mod wB) with (wB-1); auto with zarith. symmetry; apply Zmod_small; generalize wB_pos; omega. assert (x mod wB <> 0). unfold znz_eq0, znz_to_Z in *; now destruct (x mod wB). rewrite <- Zminus_mod_idemp_l. apply Zmod_small. generalize (Z_mod_lt x wB wB_pos); omega. Qed. Lemma spec_sub_c : forall x y, [-|znz_sub_c x y|] = [|x|] - [|y|]. Proof. intros; unfold znz_sub_c, znz_to_Z, interp_carry. destruct Z_lt_le_dec. replace ((wB + (x mod wB - y mod wB)) mod wB) with (wB + (x mod wB - y mod wB)). omega. symmetry; apply Zmod_small. generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. apply Zmod_small. generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. Qed. Lemma spec_sub_carry_c : forall x y, [-|znz_sub_carry_c x y|] = [|x|] - [|y|] - 1. Proof. intros; unfold znz_sub_carry_c, znz_to_Z, interp_carry. destruct Z_lt_le_dec. replace ((wB + (x mod wB - y mod wB - 1)) mod wB) with (wB + (x mod wB - y mod wB -1)). omega. symmetry; apply Zmod_small. generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. apply Zmod_small. generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega. Qed. Lemma spec_pred : forall x, [|znz_pred x|] = ([|x|] - 1) mod wB. Proof. intros; unfold znz_pred, znz_to_Z, Zpred. rewrite <- Zplus_mod_idemp_l; auto. Qed. Lemma spec_sub : forall x y, [|znz_sub x y|] = ([|x|] - [|y|]) mod wB. Proof. intros; unfold znz_sub, znz_to_Z; apply Zminus_mod. Qed. Lemma spec_sub_carry : forall x y, [|znz_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB. Proof. intros; unfold znz_sub_carry, znz_to_Z. rewrite <- Zminus_mod_idemp_l. rewrite (Zminus_mod x y). rewrite Zminus_mod_idemp_l. auto. Qed. Definition znz_mul_c x y := let (h,l) := Zdiv_eucl ([|x|]*[|y|]) wB in if znz_eq0 h then if znz_eq0 l then W0 else WW h l else WW h l. Definition znz_mul := Zmult. Definition znz_square_c x := znz_mul_c x x. Lemma spec_mul_c : forall x y, [|| znz_mul_c x y ||] = [|x|] * [|y|]. Proof. intros; unfold znz_mul_c, zn2z_to_Z. assert (Zdiv_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)). unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Zdiv_eucl as (h,l). destruct 1; injection H; clear H; intros. rewrite H0. assert ([|l|] = l). apply Zmod_small; auto. assert ([|h|] = h). apply Zmod_small. subst h. split. apply Z_div_pos; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. apply Zmult_lt_compat; auto with zarith. clear H H0 H1 H2. case_eq (znz_eq0 h); simpl; intros. case_eq (znz_eq0 l); simpl; intros. rewrite <- H3, <- H4, (spec_eq0 h), (spec_eq0 l); auto with zarith. rewrite H3, H4; auto with zarith. rewrite H3, H4; auto with zarith. Qed. Lemma spec_mul : forall x y, [|znz_mul x y|] = ([|x|] * [|y|]) mod wB. Proof. intros; unfold znz_mul, znz_to_Z; apply Zmult_mod. Qed. Lemma spec_square_c : forall x, [|| znz_square_c x||] = [|x|] * [|x|]. Proof. intros x; exact (spec_mul_c x x). Qed. Definition znz_div x y := Zdiv_eucl [|x|] [|y|]. Lemma spec_div : forall a b, 0 < [|b|] -> let (q,r) := znz_div a b in [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]. Proof. intros; unfold znz_div. assert ([|b|]>0) by auto with zarith. assert (Zdiv_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])). unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. generalize (Z_div_mod [|a|] [|b|] H0). destruct Zdiv_eucl as (q,r); destruct 1; intros. injection H1; clear H1; intros. assert ([|r|]=r). apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|]; auto with zarith. assert ([|q|]=q). apply Zmod_small. subst q. split. apply Z_div_pos; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. apply Zlt_le_trans with (wB*1). rewrite Zmult_1_r; auto with zarith. apply Zmult_le_compat; generalize wB_pos; auto with zarith. rewrite H5, H6; rewrite Zmult_comm; auto with zarith. Qed. Definition znz_div_gt := znz_div. Lemma spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> let (q,r) := znz_div_gt a b in [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]. Proof. intros. apply spec_div; auto. Qed. Definition znz_mod x y := [|x|] mod [|y|]. Definition znz_mod_gt x y := [|x|] mod [|y|]. Lemma spec_mod : forall a b, 0 < [|b|] -> [|znz_mod a b|] = [|a|] mod [|b|]. Proof. intros; unfold znz_mod. apply Zmod_small. assert ([|b|]>0) by auto with zarith. generalize (Z_mod_lt [|a|] [|b|] H0) (Z_mod_lt b wB wB_pos). fold [|b|]; omega. Qed. Lemma spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> [|znz_mod_gt a b|] = [|a|] mod [|b|]. Proof. intros; apply spec_mod; auto. Qed. Definition znz_gcd x y := Zgcd [|x|] [|y|]. Definition znz_gcd_gt x y := Zgcd [|x|] [|y|]. Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Zgcd a b <= Zmax a b. Proof. intros. generalize (Zgcd_is_gcd a b); inversion_clear 1. destruct H2; destruct H3; clear H4. assert (H3:=Zgcd_is_pos a b). destruct (Z_eq_dec (Zgcd a b) 0). rewrite e; generalize (Zmax_spec a b); omega. assert (0 <= q). apply Zmult_le_reg_r with (Zgcd a b); auto with zarith. destruct (Z_eq_dec q 0). subst q; simpl in *; subst a; simpl; auto. generalize (Zmax_spec 0 b) (Zabs_spec b); omega. apply Zle_trans with a. rewrite H1 at 2. rewrite <- (Zmult_1_l (Zgcd a b)) at 1. apply Zmult_le_compat; auto with zarith. generalize (Zmax_spec a b); omega. Qed. Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|znz_gcd a b|]. Proof. intros; unfold znz_gcd. generalize (Z_mod_lt a wB wB_pos)(Z_mod_lt b wB wB_pos); intros. fold [|a|] in *; fold [|b|] in *. replace ([|Zgcd [|a|] [|b|]|]) with (Zgcd [|a|] [|b|]). apply Zgcd_is_gcd. symmetry; apply Zmod_small. split. apply Zgcd_is_pos. apply Zle_lt_trans with (Zmax [|a|] [|b|]). apply Zgcd_bound; auto with zarith. generalize (Zmax_spec [|a|] [|b|]); omega. Qed. Lemma spec_gcd_gt : forall a b, [|a|] > [|b|] -> Zis_gcd [|a|] [|b|] [|znz_gcd_gt a b|]. Proof. intros. apply spec_gcd; auto. Qed. Definition znz_div21 a1 a2 b := Zdiv_eucl ([|a1|]*wB+[|a2|]) [|b|]. Lemma spec_div21 : forall a1 a2 b, wB/2 <= [|b|] -> [|a1|] < [|b|] -> let (q,r) := znz_div21 a1 a2 b in [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]. Proof. intros; unfold znz_div21. generalize (Z_mod_lt a1 wB wB_pos); fold [|a1|]; intros. generalize (Z_mod_lt a2 wB wB_pos); fold [|a2|]; intros. assert ([|b|]>0) by auto with zarith. remember ([|a1|]*wB+[|a2|]) as a. assert (Zdiv_eucl a [|b|] = (a/[|b|], a mod [|b|])). unfold Zmod, Zdiv; destruct Zdiv_eucl; auto. generalize (Z_div_mod a [|b|] H3). destruct Zdiv_eucl as (q,r); destruct 1; intros. injection H4; clear H4; intros. assert ([|r|]=r). apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|]; auto with zarith. assert ([|q|]=q). apply Zmod_small. subst q. split. apply Z_div_pos; auto with zarith. subst a; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. subst a. replace (wB*[|b|]) with (([|b|]-1)*wB + wB) by ring. apply Zlt_le_trans with ([|a1|]*wB+wB); auto with zarith. rewrite H8, H9; rewrite Zmult_comm; auto with zarith. Qed. Definition znz_add_mul_div p x y := ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))). Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos znz_digits -> [| znz_add_mul_div p x y |] = ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))) mod wB. Proof. intros; unfold znz_add_mul_div; auto. Qed. Definition znz_pos_mod p w := [|w|] mod (2 ^ [|p|]). Lemma spec_pos_mod : forall w p, [|znz_pos_mod p w|] = [|w|] mod (2 ^ [|p|]). Proof. intros; unfold znz_pos_mod. apply Zmod_small. generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros. split. destruct H; auto with zarith. apply Zle_lt_trans with [|w|]; auto with zarith. apply Zmod_le; auto with zarith. Qed. Definition znz_is_even x := if Z_eq_dec ([|x|] mod 2) 0 then true else false. Lemma spec_is_even : forall x, if znz_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1. Proof. intros; unfold znz_is_even; destruct Z_eq_dec; auto. generalize (Z_mod_lt [|x|] 2); omega. Qed. Definition znz_sqrt x := Zsqrt_plain [|x|]. Lemma spec_sqrt : forall x, [|znz_sqrt x|] ^ 2 <= [|x|] < ([|znz_sqrt x|] + 1) ^ 2. Proof. intros. unfold znz_sqrt. repeat rewrite Zpower_2. replace [|Zsqrt_plain [|x|]|] with (Zsqrt_plain [|x|]). apply Zsqrt_interval; auto with zarith. symmetry; apply Zmod_small. split. apply Zsqrt_plain_is_pos; auto with zarith. cut (Zsqrt_plain [|x|] <= (wB-1)); try omega. rewrite <- (Zsqrt_square_id (wB-1)). apply Zsqrt_le. split; auto. apply Zle_trans with (wB-1); auto with zarith. generalize (spec_to_Z x); auto with zarith. apply Zsquare_le. generalize wB_pos; auto with zarith. Qed. Definition znz_sqrt2 x y := let z := [|x|]*wB+[|y|] in match z with | Z0 => (0, C0 0) | Zpos p => let (s,r,_,_) := sqrtrempos p in (s, if Z_lt_le_dec r wB then C0 r else C1 (r-wB)) | Zneg _ => (0, C0 0) end. Lemma spec_sqrt2 : forall x y, wB/ 4 <= [|x|] -> let (s,r) := znz_sqrt2 x y in [||WW x y||] = [|s|] ^ 2 + [+|r|] /\ [+|r|] <= 2 * [|s|]. Proof. intros; unfold znz_sqrt2. simpl zn2z_to_Z. remember ([|x|]*wB+[|y|]) as z. destruct z. auto with zarith. destruct sqrtrempos; intros. assert (s < wB). destruct (Z_lt_le_dec s wB); auto. assert (wB * wB <= Zpos p). rewrite e. apply Zle_trans with (s*s); try omega. apply Zmult_le_compat; generalize wB_pos; auto with zarith. assert (Zpos p < wB*wB). rewrite Heqz. replace (wB*wB) with ((wB-1)*wB+wB) by ring. apply Zplus_le_lt_compat; auto with zarith. apply Zmult_le_compat; auto with zarith. generalize (spec_to_Z x); auto with zarith. generalize wB_pos; auto with zarith. omega. replace [|s|] with s by (symmetry; apply Zmod_small; auto with zarith). destruct Z_lt_le_dec; unfold interp_carry. replace [|r|] with r by (symmetry; apply Zmod_small; auto with zarith). rewrite Zpower_2; auto with zarith. replace [|r-wB|] with (r-wB) by (symmetry; apply Zmod_small; auto with zarith). rewrite Zpower_2; omega. assert (0<=Zneg p). rewrite Heqz; generalize wB_pos; auto with zarith. compute in H0; elim H0; auto. Qed. Lemma two_p_power2 : forall x, x>=0 -> two_p x = 2 ^ x. Proof. intros. unfold two_p. destruct x; simpl; auto. apply two_power_pos_correct. Qed. Definition znz_head0 x := match [|x|] with | Z0 => znz_zdigits | Zpos p => znz_zdigits - log_inf p - 1 | _ => 0 end. Lemma spec_head00: forall x, [|x|] = 0 -> [|znz_head0 x|] = Zpos znz_digits. Proof. unfold znz_head0; intros. rewrite H; simpl. apply spec_zdigits. Qed. Lemma log_inf_bounded : forall x p, Zpos x < 2^p -> log_inf x < p. Proof. induction x; simpl; intros. assert (0 < p) by (destruct p; compute; auto with zarith; discriminate). cut (log_inf x < p - 1); [omega| ]. apply IHx. change (Zpos x~1) with (2*(Zpos x)+1) in H. replace p with (Zsucc (p-1)) in H; auto with zarith. rewrite Zpower_Zsucc in H; auto with zarith. assert (0 < p) by (destruct p; compute; auto with zarith; discriminate). cut (log_inf x < p - 1); [omega| ]. apply IHx. change (Zpos x~0) with (2*(Zpos x)) in H. replace p with (Zsucc (p-1)) in H; auto with zarith. rewrite Zpower_Zsucc in H; auto with zarith. simpl; intros; destruct p; compute; auto with zarith. Qed. Lemma spec_head0 : forall x, 0 < [|x|] -> wB/ 2 <= 2 ^ ([|znz_head0 x|]) * [|x|] < wB. Proof. intros; unfold znz_head0. generalize (spec_to_Z x). destruct [|x|]; try discriminate. intros. destruct (log_inf_correct p). rewrite 2 two_p_power2 in H2; auto with zarith. assert (0 <= znz_zdigits - log_inf p - 1 < wB). split. cut (log_inf p < znz_zdigits); try omega. unfold znz_zdigits. unfold wB, base in *. apply log_inf_bounded; auto with zarith. apply Zlt_trans with znz_zdigits. omega. unfold znz_zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith. unfold znz_to_Z; rewrite (Zmod_small _ _ H3). destruct H2. split. apply Zle_trans with (2^(znz_zdigits - log_inf p - 1)*(2^log_inf p)). apply Zdiv_le_upper_bound; auto with zarith. rewrite <- Zpower_exp; auto with zarith. rewrite Zmult_comm; rewrite <- Zpower_Zsucc; auto with zarith. replace (Zsucc (znz_zdigits - log_inf p -1 +log_inf p)) with znz_zdigits by ring. unfold wB, base, znz_zdigits; auto with zarith. apply Zmult_le_compat; auto with zarith. apply Zlt_le_trans with (2^(znz_zdigits - log_inf p - 1)*(2^(Zsucc (log_inf p)))). apply Zmult_lt_compat_l; auto with zarith. rewrite <- Zpower_exp; auto with zarith. replace (znz_zdigits - log_inf p -1 +Zsucc (log_inf p)) with znz_zdigits by ring. unfold wB, base, znz_zdigits; auto with zarith. Qed. Fixpoint Ptail p := match p with | xO p => (Ptail p)+1 | _ => 0 end. Lemma Ptail_pos : forall p, 0 <= Ptail p. Proof. induction p; simpl; auto with zarith. Qed. Hint Resolve Ptail_pos. Lemma Ptail_bounded : forall p d, Zpos p < 2^(Zpos d) -> Ptail p < Zpos d. Proof. induction p; try (compute; auto; fail). intros; simpl. assert (d <> xH). intro; subst. compute in H; destruct p; discriminate. assert (Zsucc (Zpos (Ppred d)) = Zpos d). simpl; f_equal. rewrite <- Pplus_one_succ_r. destruct (Psucc_pred d); auto. rewrite H1 in H0; elim H0; auto. assert (Ptail p < Zpos (Ppred d)). apply IHp. apply Zmult_lt_reg_r with 2; auto with zarith. rewrite (Zmult_comm (Zpos p)). change (2 * Zpos p) with (Zpos p~0). rewrite Zmult_comm. rewrite <- Zpower_Zsucc; auto with zarith. rewrite H1; auto. rewrite <- H1; omega. Qed. Definition znz_tail0 x := match [|x|] with | Z0 => znz_zdigits | Zpos p => Ptail p | Zneg _ => 0 end. Lemma spec_tail00: forall x, [|x|] = 0 -> [|znz_tail0 x|] = Zpos znz_digits. Proof. unfold znz_tail0; intros. rewrite H; simpl. apply spec_zdigits. Qed. Lemma spec_tail0 : forall x, 0 < [|x|] -> exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|znz_tail0 x|]). Proof. intros; unfold znz_tail0. generalize (spec_to_Z x). destruct [|x|]; try discriminate; intros. assert ([|Ptail p|] = Ptail p). apply Zmod_small. split; auto. unfold wB, base in *. apply Zlt_trans with (Zpos digits). apply Ptail_bounded; auto with zarith. apply Zpower2_lt_lin; auto with zarith. rewrite H1. clear; induction p. exists (Zpos p); simpl; rewrite Pmult_1_r; auto with zarith. destruct IHp as (y & Yp & Ye). exists y. split; auto. change (Zpos p~0) with (2*Zpos p). rewrite Ye. change (Ptail p~0) with (Zsucc (Ptail p)). rewrite Zpower_Zsucc; auto; ring. exists 0; simpl; auto with zarith. Qed. (** Let's now group everything in two records *) Definition zmod_op := mk_znz_op (znz_digits : positive) (znz_zdigits: znz) (znz_to_Z : znz -> Z) (znz_of_pos : positive -> N * znz) (znz_head0 : znz -> znz) (znz_tail0 : znz -> znz) (znz_0 : znz) (znz_1 : znz) (znz_Bm1 : znz) (znz_compare : znz -> znz -> comparison) (znz_eq0 : znz -> bool) (znz_opp_c : znz -> carry znz) (znz_opp : znz -> znz) (znz_opp_carry : znz -> znz) (znz_succ_c : znz -> carry znz) (znz_add_c : znz -> znz -> carry znz) (znz_add_carry_c : znz -> znz -> carry znz) (znz_succ : znz -> znz) (znz_add : znz -> znz -> znz) (znz_add_carry : znz -> znz -> znz) (znz_pred_c : znz -> carry znz) (znz_sub_c : znz -> znz -> carry znz) (znz_sub_carry_c : znz -> znz -> carry znz) (znz_pred : znz -> znz) (znz_sub : znz -> znz -> znz) (znz_sub_carry : znz -> znz -> znz) (znz_mul_c : znz -> znz -> zn2z znz) (znz_mul : znz -> znz -> znz) (znz_square_c : znz -> zn2z znz) (znz_div21 : znz -> znz -> znz -> znz*znz) (znz_div_gt : znz -> znz -> znz * znz) (znz_div : znz -> znz -> znz * znz) (znz_mod_gt : znz -> znz -> znz) (znz_mod : znz -> znz -> znz) (znz_gcd_gt : znz -> znz -> znz) (znz_gcd : znz -> znz -> znz) (znz_add_mul_div : znz -> znz -> znz -> znz) (znz_pos_mod : znz -> znz -> znz) (znz_is_even : znz -> bool) (znz_sqrt2 : znz -> znz -> znz * carry znz) (znz_sqrt : znz -> znz). Definition zmod_spec := mk_znz_spec zmod_op spec_to_Z spec_of_pos spec_zdigits spec_more_than_1_digit spec_0 spec_1 spec_Bm1 spec_compare spec_eq0 spec_opp_c spec_opp spec_opp_carry spec_succ_c spec_add_c spec_add_carry_c spec_succ spec_add spec_add_carry spec_pred_c spec_sub_c spec_sub_carry_c spec_pred spec_sub spec_sub_carry spec_mul_c spec_mul spec_square_c spec_div21 spec_div_gt spec_div spec_mod_gt spec_mod spec_gcd_gt spec_gcd spec_head00 spec_head0 spec_tail00 spec_tail0 spec_add_mul_div spec_pos_mod spec_is_even spec_sqrt2 spec_sqrt. End ZModulo. (** A modular version of the previous construction. *) Module Type PositiveNotOne. Parameter p : positive. Axiom not_one : p<> 1%positive. End PositiveNotOne. Module ZModuloCyclicType (P:PositiveNotOne) <: CyclicType. Definition w := Z. Definition w_op := zmod_op P.p. Definition w_spec := zmod_spec P.not_one. End ZModuloCyclicType.