(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* w -> zn2z w. Variable ww_Bm1 : zn2z w. Variable w_opp_c : w -> carry w. Variable w_opp_carry : w -> w. Variable w_pred_c : w -> carry w. Variable w_sub_c : w -> w -> carry w. Variable w_sub_carry_c : w -> w -> carry w. Variable w_opp : w -> w. Variable w_pred : w -> w. Variable w_sub : w -> w -> w. Variable w_sub_carry : w -> w -> w. (* ** Opposites ** *) Definition ww_opp_c x := match x with | W0 => C0 W0 | WW xh xl => match w_opp_c xl with | C0 _ => match w_opp_c xh with | C0 h => C0 W0 | C1 h => C1 (WW h w_0) end | C1 l => C1 (WW (w_opp_carry xh) l) end end. Definition ww_opp x := match x with | W0 => W0 | WW xh xl => match w_opp_c xl with | C0 _ => WW (w_opp xh) w_0 | C1 l => WW (w_opp_carry xh) l end end. Definition ww_opp_carry x := match x with | W0 => ww_Bm1 | WW xh xl => w_WW (w_opp_carry xh) (w_opp_carry xl) end. Definition ww_pred_c x := match x with | W0 => C1 ww_Bm1 | WW xh xl => match w_pred_c xl with | C0 l => C0 (w_WW xh l) | C1 _ => match w_pred_c xh with | C0 h => C0 (WW h w_Bm1) | C1 _ => C1 ww_Bm1 end end end. Definition ww_pred x := match x with | W0 => ww_Bm1 | WW xh xl => match w_pred_c xl with | C0 l => w_WW xh l | C1 l => WW (w_pred xh) w_Bm1 end end. Definition ww_sub_c x y := match y, x with | W0, _ => C0 x | WW yh yl, W0 => ww_opp_c (WW yh yl) | WW yh yl, WW xh xl => match w_sub_c xl yl with | C0 l => match w_sub_c xh yh with | C0 h => C0 (w_WW h l) | C1 h => C1 (WW h l) end | C1 l => match w_sub_carry_c xh yh with | C0 h => C0 (WW h l) | C1 h => C1 (WW h l) end end end. Definition ww_sub x y := match y, x with | W0, _ => x | WW yh yl, W0 => ww_opp (WW yh yl) | WW yh yl, WW xh xl => match w_sub_c xl yl with | C0 l => w_WW (w_sub xh yh) l | C1 l => WW (w_sub_carry xh yh) l end end. Definition ww_sub_carry_c x y := match y, x with | W0, W0 => C1 ww_Bm1 | W0, WW xh xl => ww_pred_c (WW xh xl) | WW yh yl, W0 => C1 (ww_opp_carry (WW yh yl)) | WW yh yl, WW xh xl => match w_sub_carry_c xl yl with | C0 l => match w_sub_c xh yh with | C0 h => C0 (w_WW h l) | C1 h => C1 (WW h l) end | C1 l => match w_sub_carry_c xh yh with | C0 h => C0 (w_WW h l) | C1 h => C1 (w_WW h l) end end end. Definition ww_sub_carry x y := match y, x with | W0, W0 => ww_Bm1 | W0, WW xh xl => ww_pred (WW xh xl) | WW yh yl, W0 => ww_opp_carry (WW yh yl) | WW yh yl, WW xh xl => match w_sub_carry_c xl yl with | C0 l => w_WW (w_sub xh yh) l | C1 l => w_WW (w_sub_carry xh yh) l end end. (*Section DoubleProof.*) Variable w_digits : positive. Variable w_to_Z : w -> Z. Notation wB := (base w_digits). Notation wwB := (base (ww_digits w_digits)). Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). Notation "[+| c |]" := (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). Notation "[-| c |]" := (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). Notation "[+[ c ]]" := (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c) (at level 0, c at level 99). Notation "[-[ c ]]" := (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) (at level 0, c at level 99). Variable spec_w_0 : [|w_0|] = 0. Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1. Variable spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1. Variable spec_to_Z : forall x, 0 <= [|x|] < wB. Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|]. Variable spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB. Variable spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1. Variable spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1. Variable spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|]. Variable spec_sub_carry_c : forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1. Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB. Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. Variable spec_sub_carry : forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB. Lemma spec_ww_opp_c : forall x, [-[ww_opp_c x]] = -[[x]]. Proof. destruct x as [ |xh xl];simpl. reflexivity. rewrite Z.opp_add_distr;generalize (spec_opp_c xl);destruct (w_opp_c xl) as [l|l];intros H;unfold interp_carry in H;rewrite <- H; rewrite <- Z.mul_opp_l. assert ([|l|] = 0). assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega. rewrite H0;generalize (spec_opp_c xh);destruct (w_opp_c xh) as [h|h];intros H1;unfold interp_carry in *;rewrite <- H1. assert ([|h|] = 0). assert (H3:= spec_to_Z h);assert (H2 := spec_to_Z xh);omega. rewrite H2;reflexivity. simpl ww_to_Z;rewrite wwB_wBwB;rewrite spec_w_0;ring. unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB;rewrite spec_opp_carry; ring. Qed. Lemma spec_ww_opp : forall x, [[ww_opp x]] = (-[[x]]) mod wwB. Proof. destruct x as [ |xh xl];simpl. reflexivity. rewrite Z.opp_add_distr, <- Z.mul_opp_l. generalize (spec_opp_c xl);destruct (w_opp_c xl) as [l|l];intros H;unfold interp_carry in H;rewrite <- H;simpl ww_to_Z. rewrite spec_w_0;rewrite Z.add_0_r;rewrite wwB_wBwB. assert ([|l|] = 0). assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega. rewrite H0;rewrite Z.add_0_r; rewrite Z.pow_2_r; rewrite Zmult_mod_distr_r;try apply lt_0_wB. rewrite spec_opp;trivial. apply Zmod_unique with (q:= -1). exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW (w_opp_carry xh) l)). rewrite spec_opp_carry;rewrite wwB_wBwB;ring. Qed. Lemma spec_ww_opp_carry : forall x, [[ww_opp_carry x]] = wwB - [[x]] - 1. Proof. destruct x as [ |xh xl];simpl. rewrite spec_ww_Bm1;ring. rewrite spec_w_WW;simpl;repeat rewrite spec_opp_carry;rewrite wwB_wBwB;ring. Qed. Lemma spec_ww_pred_c : forall x, [-[ww_pred_c x]] = [[x]] - 1. Proof. destruct x as [ |xh xl];unfold ww_pred_c. unfold interp_carry;rewrite spec_ww_Bm1;simpl ww_to_Z;ring. simpl ww_to_Z;replace (([|xh|]*wB+[|xl|])-1) with ([|xh|]*wB+([|xl|]-1)). 2:ring. generalize (spec_pred_c xl);destruct (w_pred_c xl) as [l|l]; intros H;unfold interp_carry in H;rewrite <- H. simpl;apply spec_w_WW. rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. assert ([|l|] = wB - 1). assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega. rewrite H0;change ([|xh|] + -1) with ([|xh|] - 1). generalize (spec_pred_c xh);destruct (w_pred_c xh) as [h|h]; intros H1;unfold interp_carry in H1;rewrite <- H1. simpl;rewrite spec_w_Bm1;ring. assert ([|h|] = wB - 1). assert (H3:= spec_to_Z h);assert (H2 := spec_to_Z xh);omega. rewrite H2;unfold interp_carry;rewrite spec_ww_Bm1;rewrite wwB_wBwB;ring. Qed. Lemma spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]]. Proof. destruct y as [ |yh yl];simpl. ring. destruct x as [ |xh xl];simpl. exact (spec_ww_opp_c (WW yh yl)). replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|])) with (([|xh|]-[|yh|])*wB + ([|xl|]-[|yl|])). 2:ring. generalize (spec_sub_c xl yl);destruct (w_sub_c xl yl) as [l|l];intros H; unfold interp_carry in H;rewrite <- H. generalize (spec_sub_c xh yh);destruct (w_sub_c xh yh) as [h|h];intros H1; unfold interp_carry in H1;rewrite <- H1;unfold interp_carry; try rewrite spec_w_WW;simpl ww_to_Z;try rewrite wwB_wBwB;ring. rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. change ([|xh|] - [|yh|] + -1) with ([|xh|] - [|yh|] - 1). generalize (spec_sub_carry_c xh yh);destruct (w_sub_carry_c xh yh) as [h|h]; intros H1;unfold interp_carry in *;rewrite <- H1;simpl ww_to_Z; try rewrite wwB_wBwB;ring. Qed. Lemma spec_ww_sub_carry_c : forall x y, [-[ww_sub_carry_c x y]] = [[x]] - [[y]] - 1. Proof. destruct y as [ |yh yl];simpl. unfold Z.sub;simpl;rewrite Z.add_0_r;exact (spec_ww_pred_c x). destruct x as [ |xh xl]. unfold interp_carry;rewrite spec_w_WW;simpl ww_to_Z;rewrite wwB_wBwB; repeat rewrite spec_opp_carry;ring. simpl ww_to_Z. replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]) - 1) with (([|xh|]-[|yh|])*wB + ([|xl|]-[|yl|]-1)). 2:ring. generalize (spec_sub_carry_c xl yl);destruct (w_sub_carry_c xl yl) as [l|l];intros H;unfold interp_carry in H;rewrite <- H. generalize (spec_sub_c xh yh);destruct (w_sub_c xh yh) as [h|h];intros H1; unfold interp_carry in H1;rewrite <- H1;unfold interp_carry; try rewrite spec_w_WW;simpl ww_to_Z;try rewrite wwB_wBwB;ring. rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. change ([|xh|] - [|yh|] + -1) with ([|xh|] - [|yh|] - 1). generalize (spec_sub_carry_c xh yh);destruct (w_sub_carry_c xh yh) as [h|h]; intros H1;unfold interp_carry in *;rewrite <- H1;try rewrite spec_w_WW; simpl ww_to_Z; try rewrite wwB_wBwB;ring. Qed. Lemma spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB. Proof. destruct x as [ |xh xl];simpl. apply Zmod_unique with (-1). apply spec_ww_to_Z;trivial. rewrite spec_ww_Bm1;ring. replace ([|xh|]*wB + [|xl|] - 1) with ([|xh|]*wB + ([|xl|] - 1)). 2:ring. generalize (spec_pred_c xl);destruct (w_pred_c xl) as [l|l];intro H; unfold interp_carry in H;rewrite <- H;simpl ww_to_Z. rewrite Zmod_small. apply spec_w_WW. exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh l)). rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. change ([|xh|] + -1) with ([|xh|] - 1). assert ([|l|] = wB - 1). assert (H1:= spec_to_Z l);assert (H2:= spec_to_Z xl);omega. rewrite (mod_wwB w_digits w_to_Z);trivial. rewrite spec_pred;rewrite spec_w_Bm1;rewrite <- H0;trivial. Qed. Lemma spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. Proof. destruct y as [ |yh yl];simpl. ring_simplify ([[x]] - 0);rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial. destruct x as [ |xh xl];simpl. exact (spec_ww_opp (WW yh yl)). replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|])) with (([|xh|] - [|yh|]) * wB + ([|xl|] - [|yl|])). 2:ring. generalize (spec_sub_c xl yl);destruct (w_sub_c xl yl)as[l|l];intros H; unfold interp_carry in H;rewrite <- H. rewrite spec_w_WW;rewrite (mod_wwB w_digits w_to_Z spec_to_Z). rewrite spec_sub;trivial. simpl ww_to_Z;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub_carry;trivial. Qed. Lemma spec_ww_sub_carry : forall x y, [[ww_sub_carry x y]] = ([[x]] - [[y]] - 1) mod wwB. Proof. destruct y as [ |yh yl];simpl. ring_simplify ([[x]] - 0);exact (spec_ww_pred x). destruct x as [ |xh xl];simpl. apply Zmod_unique with (-1). apply spec_ww_to_Z;trivial. fold (ww_opp_carry (WW yh yl)). rewrite (spec_ww_opp_carry (WW yh yl));simpl ww_to_Z;ring. replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]) - 1) with (([|xh|] - [|yh|]) * wB + ([|xl|] - [|yl|] - 1)). 2:ring. generalize (spec_sub_carry_c xl yl);destruct (w_sub_carry_c xl yl)as[l|l]; intros H;unfold interp_carry in H;rewrite <- H;rewrite spec_w_WW. rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub;trivial. rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub_carry;trivial. Qed. (* End DoubleProof. *) End DoubleSub.