(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* w -> zn2z w. Variable w_W0 : w -> zn2z w. Variable w_0W : w -> zn2z w. Variable w_compare : w -> w -> comparison. Variable w_succ : w -> w. Variable w_add_c : w -> w -> carry w. Variable w_add : w -> w -> w. Variable w_sub: w -> w -> w. Variable w_mul_c : w -> w -> zn2z w. Variable w_mul : w -> w -> w. Variable w_square_c : w -> zn2z w. Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w). Variable ww_add : zn2z w -> zn2z w -> zn2z w. Variable ww_add_carry : zn2z w -> zn2z w -> zn2z w. Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w). Variable ww_sub : zn2z w -> zn2z w -> zn2z w. (* ** Multiplication ** *) (* (xh*B+xl) (yh*B + yl) xh*yh = hh = |hhh|hhl|B2 xh*yl +xl*yh = cc = |cch|ccl|B xl*yl = ll = |llh|lll *) Definition double_mul_c (cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w) x y := match x, y with | W0, _ => W0 | _, W0 => W0 | WW xh xl, WW yh yl => let hh := w_mul_c xh yh in let ll := w_mul_c xl yl in let (wc,cc) := cross xh xl yh yl hh ll in match cc with | W0 => WW (ww_add hh (w_W0 wc)) ll | WW cch ccl => match ww_add_c (w_W0 ccl) ll with | C0 l => WW (ww_add hh (w_WW wc cch)) l | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l end end end. Definition ww_mul_c := double_mul_c (fun xh xl yh yl hh ll=> match ww_add_c (w_mul_c xh yl) (w_mul_c xl yh) with | C0 cc => (w_0, cc) | C1 cc => (w_1, cc) end). Definition w_2 := w_add w_1 w_1. Definition kara_prod xh xl yh yl hh ll := match ww_add_c hh ll with C0 m => match w_compare xl xh with Eq => (w_0, m) | Lt => match w_compare yl yh with Eq => (w_0, m) | Lt => (w_0, ww_sub m (w_mul_c (w_sub xh xl) (w_sub yh yl))) | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1) end end | Gt => match w_compare yl yh with Eq => (w_0, m) | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1) end | Gt => (w_0, ww_sub m (w_mul_c (w_sub xl xh) (w_sub yl yh))) end end | C1 m => match w_compare xl xh with Eq => (w_1, m) | Lt => match w_compare yl yh with Eq => (w_1, m) | Lt => match ww_sub_c m (w_mul_c (w_sub xh xl) (w_sub yh yl)) with C0 m1 => (w_1, m1) | C1 m1 => (w_0, m1) end | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1) end end | Gt => match w_compare yl yh with Eq => (w_1, m) | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1) end | Gt => match ww_sub_c m (w_mul_c (w_sub xl xh) (w_sub yl yh)) with C1 m1 => (w_0, m1) | C0 m1 => (w_1, m1) end end end end. Definition ww_karatsuba_c := double_mul_c kara_prod. Definition ww_mul x y := match x, y with | W0, _ => W0 | _, W0 => W0 | WW xh xl, WW yh yl => let ccl := w_add (w_mul xh yl) (w_mul xl yh) in ww_add (w_W0 ccl) (w_mul_c xl yl) end. Definition ww_square_c x := match x with | W0 => W0 | WW xh xl => let hh := w_square_c xh in let ll := w_square_c xl in let xhxl := w_mul_c xh xl in let (wc,cc) := match ww_add_c xhxl xhxl with | C0 cc => (w_0, cc) | C1 cc => (w_1, cc) end in match cc with | W0 => WW (ww_add hh (w_W0 wc)) ll | WW cch ccl => match ww_add_c (w_W0 ccl) ll with | C0 l => WW (ww_add hh (w_WW wc cch)) l | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l end end end. Section DoubleMulAddn1. Variable w_mul_add : w -> w -> w -> w * w. Fixpoint double_mul_add_n1 (n:nat) : word w n -> w -> w -> w * word w n := match n return word w n -> w -> w -> w * word w n with | O => w_mul_add | S n1 => let mul_add := double_mul_add_n1 n1 in fun x y r => match x with | W0 => (w_0,extend w_0W n1 r) | WW xh xl => let (rl,l) := mul_add xl y r in let (rh,h) := mul_add xh y rl in (rh, double_WW w_WW n1 h l) end end. End DoubleMulAddn1. Section DoubleMulAddmn1. Variable wn: Type. Variable extend_n : w -> wn. Variable wn_0W : wn -> zn2z wn. Variable wn_WW : wn -> wn -> zn2z wn. Variable w_mul_add_n1 : wn -> w -> w -> w*wn. Fixpoint double_mul_add_mn1 (m:nat) : word wn m -> w -> w -> w*word wn m := match m return word wn m -> w -> w -> w*word wn m with | O => w_mul_add_n1 | S m1 => let mul_add := double_mul_add_mn1 m1 in fun x y r => match x with | W0 => (w_0,extend wn_0W m1 (extend_n r)) | WW xh xl => let (rl,l) := mul_add xl y r in let (rh,h) := mul_add xh y rl in (rh, double_WW wn_WW m1 h l) end end. End DoubleMulAddmn1. Definition w_mul_add x y r := match w_mul_c x y with | W0 => (w_0, r) | WW h l => match w_add_c l r with | C0 lr => (h,lr) | C1 lr => (w_succ h, lr) end end. (*Section DoubleProof. *) Variable w_digits : positive. Variable w_to_Z : w -> Z. Notation wB := (base w_digits). Notation wwB := (base (ww_digits w_digits)). Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99). Notation "[+| c |]" := (interp_carry 1 wB w_to_Z c) (at level 0, c at level 99). Notation "[-| c |]" := (interp_carry (-1) wB w_to_Z c) (at level 0, c at level 99). Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99). Notation "[+[ c ]]" := (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c) (at level 0, c at level 99). Notation "[-[ c ]]" := (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c) (at level 0, c at level 99). Notation "[|| x ||]" := (zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99). Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x) (at level 0, x at level 99). Variable spec_more_than_1_digit: 1 < Zpos w_digits. Variable spec_w_0 : [|w_0|] = 0. Variable spec_w_1 : [|w_1|] = 1. Variable spec_to_Z : forall x, 0 <= [|x|] < wB. Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|]. Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB. Variable spec_w_0W : forall l, [[w_0W l]] = [|l|]. Variable spec_w_compare : forall x y, w_compare x y = Z.compare [|x|] [|y|]. Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB. Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|]. Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB. Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB. Variable spec_w_mul_c : forall x y, [[ w_mul_c x y ]] = [|x|] * [|y|]. Variable spec_w_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB. Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|]. Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]]. Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB. Variable spec_ww_add_carry : forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB. Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB. Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]]. Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB. Proof. intros x;apply spec_ww_to_Z;auto. Qed. Lemma spec_ww_to_Z_wBwB : forall x, 0 <= [[x]] < wB^2. Proof. rewrite <- wwB_wBwB;apply spec_ww_to_Z. Qed. Hint Resolve spec_ww_to_Z spec_ww_to_Z_wBwB : mult. Ltac zarith := auto with zarith mult. Lemma wBwB_lex: forall a b c d, a * wB^2 + [[b]] <= c * wB^2 + [[d]] -> a <= c. Proof. intros a b c d H; apply beta_lex with [[b]] [[d]] (wB^2);zarith. Qed. Lemma wBwB_lex_inv: forall a b c d, a < c -> a * wB^2 + [[b]] < c * wB^2 + [[d]]. Proof. intros a b c d H; apply beta_lex_inv; zarith. Qed. Lemma sum_mul_carry : forall xh xl yh yl wc cc, [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] -> 0 <= [|wc|] <= 1. Proof. intros. apply (sum_mul_carry [|xh|] [|xl|] [|yh|] [|yl|] [|wc|][[cc]] wB);zarith. apply wB_pos. Qed. Theorem mult_add_ineq: forall xH yH crossH, 0 <= [|xH|] * [|yH|] + [|crossH|] < wwB. Proof. intros;rewrite wwB_wBwB;apply mult_add_ineq;zarith. Qed. Hint Resolve mult_add_ineq : mult. Lemma spec_mul_aux : forall xh xl yh yl wc (cc:zn2z w) hh ll, [[hh]] = [|xh|] * [|yh|] -> [[ll]] = [|xl|] * [|yl|] -> [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] -> [||match cc with | W0 => WW (ww_add hh (w_W0 wc)) ll | WW cch ccl => match ww_add_c (w_W0 ccl) ll with | C0 l => WW (ww_add hh (w_WW wc cch)) l | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l end end||] = ([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|]). Proof. intros;assert (U1 := wB_pos w_digits). replace (([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|])) with ([|xh|]*[|yh|]*wB^2 + ([|xh|]*[|yl|] + [|xl|]*[|yh|])*wB + [|xl|]*[|yl|]). 2:ring. rewrite <- H1;rewrite <- H;rewrite <- H0. assert (H2 := sum_mul_carry _ _ _ _ _ _ H1). destruct cc as [ | cch ccl]; simpl zn2z_to_Z; simpl ww_to_Z. rewrite spec_ww_add;rewrite spec_w_W0;rewrite Zmod_small; rewrite wwB_wBwB. ring. rewrite <- (Z.add_0_r ([|wc|]*wB));rewrite H;apply mult_add_ineq3;zarith. simpl ww_to_Z in H1. assert (U:=spec_to_Z cch). assert ([|wc|]*wB + [|cch|] <= 2*wB - 3). destruct (Z_le_gt_dec ([|wc|]*wB + [|cch|]) (2*wB - 3)) as [Hle|Hgt];trivial. assert ([|xh|] * [|yl|] + [|xl|] * [|yh|] <= (2*wB - 4)*wB + 2). ring_simplify ((2*wB - 4)*wB + 2). assert (H4 := Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)). assert (H5 := Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)). omega. generalize H3;clear H3;rewrite <- H1. rewrite Z.add_assoc; rewrite Z.pow_2_r; rewrite Z.mul_assoc; rewrite <- Z.mul_add_distr_r. assert (((2 * wB - 4) + 2)*wB <= ([|wc|] * wB + [|cch|])*wB). apply Z.mul_le_mono_nonneg;zarith. rewrite Z.mul_add_distr_r in H3. intros. assert (U2 := spec_to_Z ccl);omega. generalize (spec_ww_add_c (w_W0 ccl) ll);destruct (ww_add_c (w_W0 ccl) ll) as [l|l];unfold interp_carry;rewrite spec_w_W0;try rewrite Z.mul_1_l; simpl zn2z_to_Z; try rewrite spec_ww_add;try rewrite spec_ww_add_carry;rewrite spec_w_WW; rewrite Zmod_small;rewrite wwB_wBwB;intros. rewrite H4;ring. rewrite H;apply mult_add_ineq2;zarith. rewrite Z.add_assoc;rewrite Z.mul_add_distr_r. rewrite Z.mul_1_l;rewrite <- Z.add_assoc;rewrite H4;ring. repeat rewrite <- Z.add_assoc;rewrite H;apply mult_add_ineq2;zarith. Qed. Lemma spec_double_mul_c : forall cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w, (forall xh xl yh yl hh ll, [[hh]] = [|xh|]*[|yh|] -> [[ll]] = [|xl|]*[|yl|] -> let (wc,cc) := cross xh xl yh yl hh ll in [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|]) -> forall x y, [||double_mul_c cross x y||] = [[x]] * [[y]]. Proof. intros cross Hcross x y;destruct x as [ |xh xl];simpl;trivial. destruct y as [ |yh yl];simpl. rewrite Z.mul_0_r;trivial. assert (H1:= spec_w_mul_c xh yh);assert (H2:= spec_w_mul_c xl yl). generalize (Hcross _ _ _ _ _ _ H1 H2). destruct (cross xh xl yh yl (w_mul_c xh yh) (w_mul_c xl yl)) as (wc,cc). intros;apply spec_mul_aux;trivial. rewrite <- wwB_wBwB;trivial. Qed. Lemma spec_ww_mul_c : forall x y, [||ww_mul_c x y||] = [[x]] * [[y]]. Proof. intros x y;unfold ww_mul_c;apply spec_double_mul_c. intros xh xl yh yl hh ll H1 H2. generalize (spec_ww_add_c (w_mul_c xh yl) (w_mul_c xl yh)); destruct (ww_add_c (w_mul_c xh yl) (w_mul_c xl yh)) as [c|c]; unfold interp_carry;repeat rewrite spec_w_mul_c;intros H; (rewrite spec_w_0 || rewrite spec_w_1);rewrite H;ring. Qed. Lemma spec_w_2: [|w_2|] = 2. unfold w_2; rewrite spec_w_add; rewrite spec_w_1; simpl. apply Zmod_small; split; auto with zarith. rewrite <- (Z.pow_1_r 2); unfold base; apply Zpower_lt_monotone; auto with zarith. Qed. Lemma kara_prod_aux : forall xh xl yh yl, xh*yh + xl*yl - (xh-xl)*(yh-yl) = xh*yl + xl*yh. Proof. intros;ring. Qed. Lemma spec_kara_prod : forall xh xl yh yl hh ll, [[hh]] = [|xh|]*[|yh|] -> [[ll]] = [|xl|]*[|yl|] -> let (wc,cc) := kara_prod xh xl yh yl hh ll in [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|]. Proof. intros xh xl yh yl hh ll H H0; rewrite <- kara_prod_aux; rewrite <- H; rewrite <- H0; unfold kara_prod. assert (Hxh := (spec_to_Z xh)); assert (Hxl := (spec_to_Z xl)); assert (Hyh := (spec_to_Z yh)); assert (Hyl := (spec_to_Z yl)). generalize (spec_ww_add_c hh ll); case (ww_add_c hh ll); intros z Hz; rewrite <- Hz; unfold interp_carry; assert (Hz1 := (spec_ww_to_Z z)). rewrite spec_w_compare; case Z.compare_spec; intros Hxlh; try rewrite Hxlh; try rewrite spec_w_0; try (ring; fail). rewrite spec_w_compare; case Z.compare_spec; intros Hylh. rewrite Hylh; rewrite spec_w_0; try (ring; fail). rewrite spec_w_0; try (ring; fail). repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). split; auto with zarith. simpl in Hz; rewrite Hz; rewrite H; rewrite H0. rewrite kara_prod_aux; apply Z.add_nonneg_nonneg; apply Z.mul_nonneg_nonneg; auto with zarith. apply Z.le_lt_trans with ([[z]]-0); auto with zarith. unfold Z.sub; apply Z.add_le_mono_l; apply Z.le_0_sub; simpl; rewrite Z.opp_involutive. apply Z.mul_nonneg_nonneg; auto with zarith. match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0; intros z1 Hz2 end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_compare; case Z.compare_spec; intros Hylh. rewrite Hylh; rewrite spec_w_0; try (ring; fail). match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0; intros z1 Hz2 end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_0; try (ring; fail). repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). split. match goal with |- context[(?x - ?y) * (?z - ?t)] => replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring] end. simpl in Hz; rewrite Hz; rewrite H; rewrite H0. rewrite kara_prod_aux; apply Z.add_nonneg_nonneg; apply Z.mul_nonneg_nonneg; auto with zarith. apply Z.le_lt_trans with ([[z]]-0); auto with zarith. unfold Z.sub; apply Z.add_le_mono_l; apply Z.le_0_sub; simpl; rewrite Z.opp_involutive. apply Z.mul_nonneg_nonneg; auto with zarith. (** there is a carry in hh + ll **) rewrite Z.mul_1_l. rewrite spec_w_compare; case Z.compare_spec; intros Hxlh; try rewrite Hxlh; try rewrite spec_w_1; try (ring; fail). rewrite spec_w_compare; case Z.compare_spec; intros Hylh; try rewrite Hylh; try rewrite spec_w_1; try (ring; fail). match goal with |- context[ww_sub_c ?x ?y] => generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1; intros z1 Hz2 end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_0; rewrite Z.mul_0_l; rewrite Z.add_0_l. generalize Hz2; clear Hz2; unfold interp_carry. repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1; intros z1 Hz2 end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_2; unfold interp_carry in Hz2. transitivity (wwB + (1 * wwB + [[z1]])). ring. rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_compare; case Z.compare_spec; intros Hylh; try rewrite Hylh; try rewrite spec_w_1; try (ring; fail). match goal with |- context[ww_add_c ?x ?y] => generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1; intros z1 Hz2 end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_2; unfold interp_carry in Hz2. transitivity (wwB + (1 * wwB + [[z1]])). ring. rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). match goal with |- context[ww_sub_c ?x ?y] => generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1; intros z1 Hz2 end. simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). rewrite spec_w_0; rewrite Z.mul_0_l; rewrite Z.add_0_l. match goal with |- context[(?x - ?y) * (?z - ?t)] => replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring] end. generalize Hz2; clear Hz2; unfold interp_carry. repeat (rewrite spec_w_sub || rewrite spec_w_mul_c). repeat rewrite Zmod_small; auto with zarith; try (ring; fail). Qed. Lemma sub_carry : forall xh xl yh yl z, 0 <= z -> [|xh|]*[|yl|] + [|xl|]*[|yh|] = wwB + z -> z < wwB. Proof. intros xh xl yh yl z Hle Heq. destruct (Z_le_gt_dec wwB z);auto with zarith. generalize (Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)). generalize (Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)). rewrite <- wwB_wBwB;intros H1 H2. assert (H3 := wB_pos w_digits). assert (2*wB <= wwB). rewrite wwB_wBwB; rewrite Z.pow_2_r; apply Z.mul_le_mono_nonneg;zarith. omega. Qed. Ltac Spec_ww_to_Z x := let H:= fresh "H" in assert (H:= spec_ww_to_Z x). Ltac Zmult_lt_b x y := let H := fresh "H" in assert (H := Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)). Lemma spec_ww_karatsuba_c : forall x y, [||ww_karatsuba_c x y||]=[[x]]*[[y]]. Proof. intros x y; unfold ww_karatsuba_c;apply spec_double_mul_c. intros; apply spec_kara_prod; auto. Qed. Lemma spec_ww_mul : forall x y, [[ww_mul x y]] = [[x]]*[[y]] mod wwB. Proof. assert (U:= lt_0_wB w_digits). assert (U1:= lt_0_wwB w_digits). intros x y; case x; auto; intros xh xl. case y; auto. simpl; rewrite Z.mul_0_r; rewrite Zmod_small; auto with zarith. intros yh yl;simpl. repeat (rewrite spec_ww_add || rewrite spec_w_W0 || rewrite spec_w_mul_c || rewrite spec_w_add || rewrite spec_w_mul). rewrite <- Zplus_mod; auto with zarith. repeat (rewrite Z.mul_add_distr_r || rewrite Z.mul_add_distr_l). rewrite <- Zmult_mod_distr_r; auto with zarith. rewrite <- Z.pow_2_r; rewrite <- wwB_wBwB; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Zmod_mod; auto with zarith. rewrite <- Zplus_mod; auto with zarith. match goal with |- ?X mod _ = _ => rewrite <- Z_mod_plus with (a := X) (b := [|xh|] * [|yh|]) end; auto with zarith. f_equal; auto; rewrite wwB_wBwB; ring. Qed. Lemma spec_ww_square_c : forall x, [||ww_square_c x||] = [[x]]*[[x]]. Proof. destruct x as [ |xh xl];simpl;trivial. case_eq match ww_add_c (w_mul_c xh xl) (w_mul_c xh xl) with | C0 cc => (w_0, cc) | C1 cc => (w_1, cc) end;intros wc cc Heq. apply (spec_mul_aux xh xl xh xl wc cc);trivial. generalize Heq (spec_ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));clear Heq. rewrite spec_w_mul_c;destruct (ww_add_c (w_mul_c xh xl) (w_mul_c xh xl)); unfold interp_carry;try rewrite Z.mul_1_l;intros Heq Heq';inversion Heq; rewrite (Z.mul_comm [|xl|]);subst. rewrite spec_w_0;rewrite Z.mul_0_l;rewrite Z.add_0_l;trivial. rewrite spec_w_1;rewrite Z.mul_1_l;rewrite <- wwB_wBwB;trivial. Qed. Section DoubleMulAddn1Proof. Variable w_mul_add : w -> w -> w -> w * w. Variable spec_w_mul_add : forall x y r, let (h,l):= w_mul_add x y r in [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|]. Lemma spec_double_mul_add_n1 : forall n x y r, let (h,l) := double_mul_add_n1 w_mul_add n x y r in [|h|]*double_wB w_digits n + [!n|l!] = [!n|x!]*[|y|]+[|r|]. Proof. induction n;intros x y r;trivial. exact (spec_w_mul_add x y r). unfold double_mul_add_n1;destruct x as[ |xh xl]; fold(double_mul_add_n1 w_mul_add). rewrite spec_w_0;rewrite spec_extend;simpl;trivial. assert(H:=IHn xl y r);destruct (double_mul_add_n1 w_mul_add n xl y r)as(rl,l). assert(U:=IHn xh y rl);destruct(double_mul_add_n1 w_mul_add n xh y rl)as(rh,h). rewrite <- double_wB_wwB. rewrite spec_double_WW;simpl;trivial. rewrite Z.mul_add_distr_r;rewrite <- Z.add_assoc;rewrite <- H. rewrite Z.mul_assoc;rewrite Z.add_assoc;rewrite <- Z.mul_add_distr_r. rewrite U;ring. Qed. End DoubleMulAddn1Proof. Lemma spec_w_mul_add : forall x y r, let (h,l):= w_mul_add x y r in [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|]. Proof. intros x y r;unfold w_mul_add;assert (H:=spec_w_mul_c x y); destruct (w_mul_c x y) as [ |h l];simpl;rewrite <- H. rewrite spec_w_0;trivial. assert (U:=spec_w_add_c l r);destruct (w_add_c l r) as [lr|lr];unfold interp_carry in U;try rewrite Z.mul_1_l in H;simpl. rewrite U;ring. rewrite spec_w_succ. rewrite Zmod_small. rewrite <- Z.add_assoc;rewrite <- U;ring. simpl in H;assert (H1:= Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)). rewrite <- H in H1. assert (H2:=spec_to_Z h);split;zarith. case H1;clear H1;intro H1;clear H1. replace (wB ^ 2 - 2 * wB) with ((wB - 2)*wB). 2:ring. intros H0;assert (U1:= wB_pos w_digits). assert (H1 := beta_lex _ _ _ _ _ H0 (spec_to_Z l));zarith. Qed. (* End DoubleProof. *) End DoubleMul.