(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* eq) succ. Program Instance pred_wd : Proper (eq ==> eq) pred. Program Instance add_wd : Proper (eq ==> eq ==> eq) add. Program Instance sub_wd : Proper (eq ==> eq ==> eq) sub. Program Instance mul_wd : Proper (eq ==> eq ==> eq) mul. Theorem gt_wB_1 : 1 < wB. Proof. unfold base. apply Zpower_gt_1; unfold Z.lt; auto with zarith. Qed. Theorem gt_wB_0 : 0 < wB. Proof. pose proof gt_wB_1; auto with zarith. Qed. Lemma one_mod_wB : 1 mod wB = 1. Proof. rewrite Zmod_small. reflexivity. split. auto with zarith. apply gt_wB_1. Qed. Lemma succ_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB. Proof. intro n. rewrite <- one_mod_wB at 2. now rewrite <- Zplus_mod. Qed. Lemma pred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB. Proof. intro n. rewrite <- one_mod_wB at 2. now rewrite Zminus_mod. Qed. Lemma NZ_to_Z_mod : forall n, [| n |] mod wB = [| n |]. Proof. intro n; rewrite Zmod_small. reflexivity. apply ZnZ.spec_to_Z. Qed. Theorem pred_succ : forall n, P (S n) == n. Proof. intro n. zify. rewrite <- pred_mod_wB. replace ([| n |] + 1 - 1)%Z with [| n |] by ring. apply NZ_to_Z_mod. Qed. Theorem one_succ : one == succ zero. Proof. zify; simpl Z.add. now rewrite one_mod_wB. Qed. Theorem two_succ : two == succ one. Proof. reflexivity. Qed. Section Induction. Variable A : t -> Prop. Hypothesis A_wd : Proper (eq ==> iff) A. Hypothesis A0 : A 0. Hypothesis AS : forall n, A n <-> A (S n). (* Below, we use only -> direction *) Let B (n : Z) := A (ZnZ.of_Z n). Lemma B0 : B 0. Proof. unfold B. apply A0. Qed. Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1). Proof. intros n H1 H2 H3. unfold B in *. apply AS in H3. setoid_replace (ZnZ.of_Z (n + 1)) with (S (ZnZ.of_Z n)). assumption. zify. rewrite 2 ZnZ.of_Z_correct; auto with zarith. symmetry; apply Zmod_small; auto with zarith. Qed. Lemma B_holds : forall n : Z, 0 <= n < wB -> B n. Proof. intros n [H1 H2]. apply Zbounded_induction with wB. apply B0. apply BS. assumption. assumption. Qed. Theorem bi_induction : forall n, A n. Proof. intro n. setoid_replace n with (ZnZ.of_Z (ZnZ.to_Z n)). apply B_holds. apply ZnZ.spec_to_Z. red. symmetry. apply ZnZ.of_Z_correct. apply ZnZ.spec_to_Z. Qed. End Induction. Theorem add_0_l : forall n, 0 + n == n. Proof. intro n. zify. rewrite Z.add_0_l. apply Zmod_small. apply ZnZ.spec_to_Z. Qed. Theorem add_succ_l : forall n m, (S n) + m == S (n + m). Proof. intros n m. zify. rewrite succ_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0. rewrite <- (Z.add_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l. rewrite (Z.add_comm 1 [| m |]); now rewrite Z.add_assoc. Qed. Theorem sub_0_r : forall n, n - 0 == n. Proof. intro n. zify. rewrite Z.sub_0_r. apply NZ_to_Z_mod. Qed. Theorem sub_succ_r : forall n m, n - (S m) == P (n - m). Proof. intros n m. zify. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l. now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z by ring. Qed. Theorem mul_0_l : forall n, 0 * n == 0. Proof. intro n. now zify. Qed. Theorem mul_succ_l : forall n m, (S n) * m == n * m + m. Proof. intros n m. zify. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l. now rewrite Z.mul_add_distr_r, Z.mul_1_l. Qed. Definition t := t. End NZCyclicAxiomsMod.