(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Z := znz_to_Z w_op. Definition Z_to_NZ : Z -> t := znz_of_Z w_op. Local Notation wB := (base w_op.(znz_digits)). Local Notation "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99). Definition eq (n m : t) := [| n |] = [| m |]. Definition zero := w_op.(znz_0). Definition succ := w_op.(znz_succ). Definition pred := w_op.(znz_pred). Definition add := w_op.(znz_add). Definition sub := w_op.(znz_sub). Definition mul := w_op.(znz_mul). Local Infix "==" := eq (at level 70). Local Notation "0" := zero. Local Notation S := succ. Local Notation P := pred. Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul. Hint Rewrite w_spec.(spec_0) w_spec.(spec_succ) w_spec.(spec_pred) w_spec.(spec_add) w_spec.(spec_mul) w_spec.(spec_sub) : w. Ltac wsimpl := unfold eq, zero, succ, pred, add, sub, mul; autorewrite with w. Ltac wcongruence := repeat red; intros; wsimpl; congruence. Instance eq_equiv : Equivalence eq. Proof. unfold eq. firstorder. Qed. Instance succ_wd : Proper (eq ==> eq) succ. Proof. wcongruence. Qed. Instance pred_wd : Proper (eq ==> eq) pred. Proof. wcongruence. Qed. Instance add_wd : Proper (eq ==> eq ==> eq) add. Proof. wcongruence. Qed. Instance sub_wd : Proper (eq ==> eq ==> eq) sub. Proof. wcongruence. Qed. Instance mul_wd : Proper (eq ==> eq ==> eq) mul. Proof. wcongruence. Qed. Theorem gt_wB_1 : 1 < wB. Proof. unfold base. apply Zpower_gt_1; unfold Zlt; auto with zarith. Qed. Theorem gt_wB_0 : 0 < wB. Proof. pose proof gt_wB_1; auto with zarith. Qed. Lemma succ_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB. Proof. intro n. pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zplus_mod. reflexivity. now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]]. Qed. Lemma pred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB. Proof. intro n. pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zminus_mod. reflexivity. now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]]. Qed. Lemma NZ_to_Z_mod : forall n, [| n |] mod wB = [| n |]. Proof. intro n; rewrite Zmod_small. reflexivity. apply w_spec.(spec_to_Z). Qed. Theorem pred_succ : forall n, P (S n) == n. Proof. intro n. wsimpl. rewrite <- pred_mod_wB. replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod. Qed. Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0. Proof. unfold NZ_to_Z, Z_to_NZ. wsimpl. rewrite znz_of_Z_correct; auto. exact w_spec. split; [auto with zarith |apply gt_wB_0]. Qed. Section Induction. Variable A : t -> Prop. Hypothesis A_wd : Proper (eq ==> iff) A. Hypothesis A0 : A 0. Hypothesis AS : forall n, A n <-> A (S n). (* Below, we use only -> direction *) Let B (n : Z) := A (Z_to_NZ n). Lemma B0 : B 0. Proof. unfold B. now rewrite Z_to_NZ_0. Qed. Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1). Proof. intros n H1 H2 H3. unfold B in *. apply -> AS in H3. setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)). assumption. wsimpl. unfold NZ_to_Z, Z_to_NZ. do 2 (rewrite znz_of_Z_correct; [ | exact w_spec | auto with zarith]). symmetry; apply Zmod_small; auto with zarith. Qed. Lemma B_holds : forall n : Z, 0 <= n < wB -> B n. Proof. intros n [H1 H2]. apply Zbounded_induction with wB. apply B0. apply BS. assumption. assumption. Qed. Theorem bi_induction : forall n, A n. Proof. intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)). apply B_holds. apply w_spec.(spec_to_Z). unfold eq, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct. reflexivity. exact w_spec. apply w_spec.(spec_to_Z). Qed. End Induction. Theorem add_0_l : forall n, 0 + n == n. Proof. intro n. wsimpl. rewrite Zplus_0_l. rewrite Zmod_small; [reflexivity | apply w_spec.(spec_to_Z)]. Qed. Theorem add_succ_l : forall n m, (S n) + m == S (n + m). Proof. intros n m. wsimpl. rewrite succ_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0. rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l. rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc. Qed. Theorem sub_0_r : forall n, n - 0 == n. Proof. intro n. wsimpl. rewrite Zminus_0_r. apply NZ_to_Z_mod. Qed. Theorem sub_succ_r : forall n m, n - (S m) == P (n - m). Proof. intros n m. wsimpl. rewrite Zminus_mod_idemp_r, Zminus_mod_idemp_l. now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z by auto with zarith. Qed. Theorem mul_0_l : forall n, 0 * n == 0. Proof. intro n. wsimpl. now rewrite Zmult_0_l. Qed. Theorem mul_succ_l : forall n m, (S n) * m == n * m + m. Proof. intros n m. wsimpl. rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l. now rewrite Zmult_plus_distr_l, Zmult_1_l. Qed. End NZCyclicAxiomsMod.