(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Z; of_pos : positive -> N * t; (* Euclidean division by [2^digits] *) head0 : t -> t; (* number of digits 0 in front of the number *) tail0 : t -> t; (* number of digits 0 at the bottom of the number *) (* Basic numbers *) zero : t; one : t; minus_one : t; (* [2^digits-1], which is equivalent to [-1] *) (* Comparison *) compare : t -> t -> comparison; eq0 : t -> bool; (* Basic arithmetic operations *) opp_c : t -> carry t; opp : t -> t; opp_carry : t -> t; (* the carry is known to be -1 *) succ_c : t -> carry t; add_c : t -> t -> carry t; add_carry_c : t -> t -> carry t; succ : t -> t; add : t -> t -> t; add_carry : t -> t -> t; pred_c : t -> carry t; sub_c : t -> t -> carry t; sub_carry_c : t -> t -> carry t; pred : t -> t; sub : t -> t -> t; sub_carry : t -> t -> t; mul_c : t -> t -> zn2z t; mul : t -> t -> t; square_c : t -> zn2z t; (* Special divisions operations *) div21 : t -> t -> t -> t*t; div_gt : t -> t -> t * t; (* specialized version of [div] *) div : t -> t -> t * t; modulo_gt : t -> t -> t; (* specialized version of [mod] *) modulo : t -> t -> t; gcd_gt : t -> t -> t; (* specialized version of [gcd] *) gcd : t -> t -> t; (* [add_mul_div p i j] is a combination of the [(digits-p)] low bits of [i] above the [p] high bits of [j]: [add_mul_div p i j = i*2^p+j/2^(digits-p)] *) add_mul_div : t -> t -> t -> t; (* [pos_mod p i] is [i mod 2^p] *) pos_mod : t -> t -> t; is_even : t -> bool; (* square root *) sqrt2 : t -> t -> t * carry t; sqrt : t -> t; (* bitwise operations *) lor : t -> t -> t; land : t -> t -> t; lxor : t -> t -> t }. Section Specs. Context {t : Type}{ops : Ops t}. Notation "[| x |]" := (to_Z x) (at level 0, x at level 99). Let wB := base digits. Notation "[+| c |]" := (interp_carry 1 wB to_Z c) (at level 0, c at level 99). Notation "[-| c |]" := (interp_carry (-1) wB to_Z c) (at level 0, c at level 99). Notation "[|| x ||]" := (zn2z_to_Z wB to_Z x) (at level 0, x at level 99). Class Specs := MkSpecs { (* Conversion functions with Z *) spec_to_Z : forall x, 0 <= [| x |] < wB; spec_of_pos : forall p, Zpos p = (Z.of_N (fst (of_pos p)))*wB + [|(snd (of_pos p))|]; spec_zdigits : [| zdigits |] = Zpos digits; spec_more_than_1_digit: 1 < Zpos digits; (* Basic numbers *) spec_0 : [|zero|] = 0; spec_1 : [|one|] = 1; spec_m1 : [|minus_one|] = wB - 1; (* Comparison *) spec_compare : forall x y, compare x y = ([|x|] ?= [|y|]); (* NB: the spec of [eq0] is deliberately partial, see DoubleCyclic where [eq0 x = true <-> x = W0] *) spec_eq0 : forall x, eq0 x = true -> [|x|] = 0; (* Basic arithmetic operations *) spec_opp_c : forall x, [-|opp_c x|] = -[|x|]; spec_opp : forall x, [|opp x|] = (-[|x|]) mod wB; spec_opp_carry : forall x, [|opp_carry x|] = wB - [|x|] - 1; spec_succ_c : forall x, [+|succ_c x|] = [|x|] + 1; spec_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|]; spec_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|] + [|y|] + 1; spec_succ : forall x, [|succ x|] = ([|x|] + 1) mod wB; spec_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wB; spec_add_carry : forall x y, [|add_carry x y|] = ([|x|] + [|y|] + 1) mod wB; spec_pred_c : forall x, [-|pred_c x|] = [|x|] - 1; spec_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|]; spec_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|] - [|y|] - 1; spec_pred : forall x, [|pred x|] = ([|x|] - 1) mod wB; spec_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wB; spec_sub_carry : forall x y, [|sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB; spec_mul_c : forall x y, [|| mul_c x y ||] = [|x|] * [|y|]; spec_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wB; spec_square_c : forall x, [|| square_c x||] = [|x|] * [|x|]; (* Special divisions operations *) spec_div21 : forall a1 a2 b, wB/2 <= [|b|] -> [|a1|] < [|b|] -> let (q,r) := div21 a1 a2 b in [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]; spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> let (q,r) := div_gt a b in [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]; spec_div : forall a b, 0 < [|b|] -> let (q,r) := div a b in [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|]; spec_modulo_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] -> [|modulo_gt a b|] = [|a|] mod [|b|]; spec_modulo : forall a b, 0 < [|b|] -> [|modulo a b|] = [|a|] mod [|b|]; spec_gcd_gt : forall a b, [|a|] > [|b|] -> Zis_gcd [|a|] [|b|] [|gcd_gt a b|]; spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|]; (* shift operations *) spec_head00: forall x, [|x|] = 0 -> [|head0 x|] = Zpos digits; spec_head0 : forall x, 0 < [|x|] -> wB/ 2 <= 2 ^ ([|head0 x|]) * [|x|] < wB; spec_tail00: forall x, [|x|] = 0 -> [|tail0 x|] = Zpos digits; spec_tail0 : forall x, 0 < [|x|] -> exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail0 x|]) ; spec_add_mul_div : forall x y p, [|p|] <= Zpos digits -> [| add_mul_div p x y |] = ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos digits) - [|p|]))) mod wB; spec_pos_mod : forall w p, [|pos_mod p w|] = [|w|] mod (2 ^ [|p|]); (* sqrt *) spec_is_even : forall x, if is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1; spec_sqrt2 : forall x y, wB/ 4 <= [|x|] -> let (s,r) := sqrt2 x y in [||WW x y||] = [|s|] ^ 2 + [+|r|] /\ [+|r|] <= 2 * [|s|]; spec_sqrt : forall x, [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2; spec_lor : forall x y, [|lor x y|] = Z.lor [|x|] [|y|]; spec_land : forall x y, [|land x y|] = Z.land [|x|] [|y|]; spec_lxor : forall x y, [|lxor x y|] = Z.lxor [|x|] [|y|] }. End Specs. Arguments Specs {t} ops. (** Generic construction of double words *) Section WW. Context {t : Type}{ops : Ops t}{specs : Specs ops}. Let wB := base digits. Definition WO' (eq0:t->bool) zero h := if eq0 h then W0 else WW h zero. Definition WO := Eval lazy beta delta [WO'] in let eq0 := ZnZ.eq0 in let zero := ZnZ.zero in WO' eq0 zero. Definition OW' (eq0:t->bool) zero l := if eq0 l then W0 else WW zero l. Definition OW := Eval lazy beta delta [OW'] in let eq0 := ZnZ.eq0 in let zero := ZnZ.zero in OW' eq0 zero. Definition WW' (eq0:t->bool) zero h l := if eq0 h then OW' eq0 zero l else WW h l. Definition WW := Eval lazy beta delta [WW' OW'] in let eq0 := ZnZ.eq0 in let zero := ZnZ.zero in WW' eq0 zero. Lemma spec_WO : forall h, zn2z_to_Z wB to_Z (WO h) = (to_Z h)*wB. Proof. unfold zn2z_to_Z, WO; simpl; intros. case_eq (eq0 h); intros. rewrite (spec_eq0 _ H); auto. rewrite spec_0; auto with zarith. Qed. Lemma spec_OW : forall l, zn2z_to_Z wB to_Z (OW l) = to_Z l. Proof. unfold zn2z_to_Z, OW; simpl; intros. case_eq (eq0 l); intros. rewrite (spec_eq0 _ H); auto. rewrite spec_0; auto with zarith. Qed. Lemma spec_WW : forall h l, zn2z_to_Z wB to_Z (WW h l) = (to_Z h)*wB + to_Z l. Proof. unfold WW; simpl; intros. case_eq (eq0 h); intros. rewrite (spec_eq0 _ H); auto. fold (OW l). rewrite spec_OW; auto. simpl; auto. Qed. End WW. (** Injecting [Z] numbers into a cyclic structure *) Section Of_Z. Context {t : Type}{ops : Ops t}{specs : Specs ops}. Notation "[| x |]" := (to_Z x) (at level 0, x at level 99). Theorem of_pos_correct: forall p, Zpos p < base digits -> [|(snd (of_pos p))|] = Zpos p. Proof. intros p Hp. generalize (spec_of_pos p). case (of_pos p); intros n w1; simpl. case n; auto with zarith. intros p1 Hp1; contradict Hp; apply Z.le_ngt. replace (base digits) with (1 * base digits + 0) by ring. rewrite Hp1. apply Z.add_le_mono. apply Z.mul_le_mono_nonneg; auto with zarith. case p1; simpl; intros; red; simpl; intros; discriminate. unfold base; auto with zarith. case (spec_to_Z w1); auto with zarith. Qed. Definition of_Z z := match z with | Zpos p => snd (of_pos p) | _ => zero end. Theorem of_Z_correct: forall p, 0 <= p < base digits -> [|of_Z p|] = p. Proof. intros p; case p; simpl; try rewrite spec_0; auto. intros; rewrite of_pos_correct; auto with zarith. intros p1 (H1, _); contradict H1; apply Z.lt_nge; red; simpl; auto. Qed. End Of_Z. End ZnZ. (** A modular specification grouping the earlier records. *) Module Type CyclicType. Parameter t : Type. Declare Instance ops : ZnZ.Ops t. Declare Instance specs : ZnZ.Specs ops. End CyclicType. (** A Cyclic structure can be seen as a ring *) Module CyclicRing (Import Cyclic : CyclicType). Local Notation "[| x |]" := (ZnZ.to_Z x) (at level 0, x at level 99). Definition eq (n m : t) := [| n |] = [| m |]. Local Infix "==" := eq (at level 70). Local Notation "0" := ZnZ.zero. Local Notation "1" := ZnZ.one. Local Infix "+" := ZnZ.add. Local Infix "-" := ZnZ.sub. Local Notation "- x" := (ZnZ.opp x). Local Infix "*" := ZnZ.mul. Local Notation wB := (base ZnZ.digits). Hint Rewrite ZnZ.spec_0 ZnZ.spec_1 ZnZ.spec_add ZnZ.spec_mul ZnZ.spec_opp ZnZ.spec_sub : cyclic. Ltac zify := unfold eq in *; autorewrite with cyclic. Lemma add_0_l : forall x, 0 + x == x. Proof. intros. zify. rewrite Z.add_0_l. apply Zmod_small. apply ZnZ.spec_to_Z. Qed. Lemma add_comm : forall x y, x + y == y + x. Proof. intros. zify. now rewrite Z.add_comm. Qed. Lemma add_assoc : forall x y z, x + (y + z) == x + y + z. Proof. intros. zify. now rewrite Zplus_mod_idemp_r, Zplus_mod_idemp_l, Z.add_assoc. Qed. Lemma mul_1_l : forall x, 1 * x == x. Proof. intros. zify. rewrite Z.mul_1_l. apply Zmod_small. apply ZnZ.spec_to_Z. Qed. Lemma mul_comm : forall x y, x * y == y * x. Proof. intros. zify. now rewrite Z.mul_comm. Qed. Lemma mul_assoc : forall x y z, x * (y * z) == x * y * z. Proof. intros. zify. now rewrite Zmult_mod_idemp_r, Zmult_mod_idemp_l, Z.mul_assoc. Qed. Lemma mul_add_distr_r : forall x y z, (x+y)*z == x*z + y*z. Proof. intros. zify. now rewrite <- Zplus_mod, Zmult_mod_idemp_l, Z.mul_add_distr_r. Qed. Lemma add_opp_r : forall x y, x + - y == x-y. Proof. intros. zify. rewrite <- Zminus_mod_idemp_r. unfold Z.sub. destruct (Z.eq_dec ([|y|] mod wB) 0) as [EQ|NEQ]. rewrite Z_mod_zero_opp_full, EQ, 2 Z.add_0_r; auto. rewrite Z_mod_nz_opp_full by auto. rewrite <- Zplus_mod_idemp_r, <- Zminus_mod_idemp_l. rewrite Z_mod_same_full. simpl. now rewrite Zplus_mod_idemp_r. Qed. Lemma add_opp_diag_r : forall x, x + - x == 0. Proof. intros. red. rewrite add_opp_r. zify. now rewrite Z.sub_diag, Zmod_0_l. Qed. Lemma CyclicRing : ring_theory 0 1 ZnZ.add ZnZ.mul ZnZ.sub ZnZ.opp eq. Proof. constructor. exact add_0_l. exact add_comm. exact add_assoc. exact mul_1_l. exact mul_comm. exact mul_assoc. exact mul_add_distr_r. symmetry. apply add_opp_r. exact add_opp_diag_r. Qed. Definition eqb x y := match ZnZ.compare x y with Eq => true | _ => false end. Lemma eqb_eq : forall x y, eqb x y = true <-> x == y. Proof. intros. unfold eqb, eq. rewrite ZnZ.spec_compare. case Z.compare_spec; intuition; try discriminate. Qed. Lemma eqb_correct : forall x y, eqb x y = true -> x==y. Proof. now apply eqb_eq. Qed. End CyclicRing.