(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n<>0. Proof. auto with zarith. Qed. Definition Zdiv_mult_cancel_r a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H). Definition Zdiv_mult_cancel_l a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H). Definition Z_div_plus_l a b c H := Zdiv.Z_div_plus_full_l a b c (Zlt0_not_eq _ H). (* Automation *) Hint Extern 2 (Z.le _ _) => (match goal with |- Zpos _ <= Zpos _ => exact (eq_refl _) | H: _ <= ?p |- _ <= ?p => apply Z.le_trans with (2 := H) | H: _ < ?p |- _ <= ?p => apply Z.lt_le_incl; apply Z.le_lt_trans with (2 := H) end). Hint Extern 2 (Z.lt _ _) => (match goal with |- Zpos _ < Zpos _ => exact (eq_refl _) | H: _ <= ?p |- _ <= ?p => apply Z.lt_le_trans with (2 := H) | H: _ < ?p |- _ <= ?p => apply Z.le_lt_trans with (2 := H) end). Hint Resolve Z.lt_gt Z.le_ge Z_div_pos: zarith. (************************************** Properties of order and product **************************************) Theorem beta_lex: forall a b c d beta, a * beta + b <= c * beta + d -> 0 <= b < beta -> 0 <= d < beta -> a <= c. Proof. intros a b c d beta H1 (H3, H4) (H5, H6). assert (a - c < 1); auto with zarith. apply Z.mul_lt_mono_pos_r with beta; auto with zarith. apply Z.le_lt_trans with (d - b); auto with zarith. rewrite Z.mul_sub_distr_r; auto with zarith. Qed. Theorem beta_lex_inv: forall a b c d beta, a < c -> 0 <= b < beta -> 0 <= d < beta -> a * beta + b < c * beta + d. Proof. intros a b c d beta H1 (H3, H4) (H5, H6). case (Z.le_gt_cases (c * beta + d) (a * beta + b)); auto with zarith. intros H7. contradict H1. apply Z.le_ngt. apply beta_lex with (1 := H7); auto. Qed. Lemma beta_mult : forall h l beta, 0 <= h < beta -> 0 <= l < beta -> 0 <= h*beta+l < beta^2. Proof. intros h l beta H1 H2;split. auto with zarith. rewrite <- (Z.add_0_r (beta^2)); rewrite Z.pow_2_r; apply beta_lex_inv;auto with zarith. Qed. Lemma Zmult_lt_b : forall b x y, 0 <= x < b -> 0 <= y < b -> 0 <= x * y <= b^2 - 2*b + 1. Proof. intros b x y (Hx1,Hx2) (Hy1,Hy2);split;auto with zarith. apply Z.le_trans with ((b-1)*(b-1)). apply Z.mul_le_mono_nonneg;auto with zarith. apply Z.eq_le_incl; ring. Qed. Lemma sum_mul_carry : forall xh xl yh yl wc cc beta, 1 < beta -> 0 <= wc < beta -> 0 <= xh < beta -> 0 <= xl < beta -> 0 <= yh < beta -> 0 <= yl < beta -> 0 <= cc < beta^2 -> wc*beta^2 + cc = xh*yl + xl*yh -> 0 <= wc <= 1. Proof. intros xh xl yh yl wc cc beta U H1 H2 H3 H4 H5 H6 H7. assert (H8 := Zmult_lt_b beta xh yl H2 H5). assert (H9 := Zmult_lt_b beta xl yh H3 H4). split;auto with zarith. apply beta_lex with (cc) (beta^2 - 2) (beta^2); auto with zarith. Qed. Theorem mult_add_ineq: forall x y cross beta, 0 <= x < beta -> 0 <= y < beta -> 0 <= cross < beta -> 0 <= x * y + cross < beta^2. Proof. intros x y cross beta HH HH1 HH2. split; auto with zarith. apply Z.le_lt_trans with ((beta-1)*(beta-1)+(beta-1)); auto with zarith. apply Z.add_le_mono; auto with zarith. apply Z.mul_le_mono_nonneg; auto with zarith. rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r, Z.pow_2_r; auto with zarith. Qed. Theorem mult_add_ineq2: forall x y c cross beta, 0 <= x < beta -> 0 <= y < beta -> 0 <= c*beta + cross <= 2*beta - 2 -> 0 <= x * y + (c*beta + cross) < beta^2. Proof. intros x y c cross beta HH HH1 HH2. split; auto with zarith. apply Z.le_lt_trans with ((beta-1)*(beta-1)+(2*beta-2));auto with zarith. apply Z.add_le_mono; auto with zarith. apply Z.mul_le_mono_nonneg; auto with zarith. rewrite ?Z.mul_sub_distr_l, ?Z.mul_sub_distr_r, Z.pow_2_r; auto with zarith. Qed. Theorem mult_add_ineq3: forall x y c cross beta, 0 <= x < beta -> 0 <= y < beta -> 0 <= cross <= beta - 2 -> 0 <= c <= 1 -> 0 <= x * y + (c*beta + cross) < beta^2. Proof. intros x y c cross beta HH HH1 HH2 HH3. apply mult_add_ineq2;auto with zarith. split;auto with zarith. apply Z.le_trans with (1*beta+cross);auto with zarith. Qed. Hint Rewrite Z.mul_1_r Z.mul_0_r Z.mul_1_l Z.mul_0_l Z.add_0_l Z.add_0_r Z.sub_0_r: rm10. (************************************** Properties of Z.div and Z.modulo **************************************) Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a. Proof. intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto. case (Z.le_gt_cases b a); intros H4; auto with zarith. rewrite Zmod_small; auto with zarith. Qed. Theorem Zmod_distr: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> (2 ^a * r + t) mod (2 ^ b) = (2 ^a * r) mod (2 ^ b) + t. Proof. intros a b r t (H1, H2) H3 (H4, H5). assert (t < 2 ^ b). apply Z.lt_le_trans with (1:= H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Zmod_small with (a := t); auto with zarith. apply Zmod_small; auto with zarith. split; auto with zarith. assert (0 <= 2 ^a * r); auto with zarith. apply Z.add_nonneg_nonneg; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. pattern (2 ^ b) at 2; replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring. apply Z.add_le_lt_mono; auto with zarith. replace b with ((b - a) + a); try ring. rewrite Zpower_exp; auto with zarith. pattern (2 ^a) at 4; rewrite <- (Z.mul_1_l (2 ^a)); try rewrite <- Z.mul_sub_distr_r. rewrite (Z.mul_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l; auto with zarith. rewrite (Z.mul_comm (2 ^a)); apply Z.mul_le_mono_nonneg_r; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. Qed. Theorem Zmod_shift_r: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> (r * 2 ^a + t) mod (2 ^ b) = (r * 2 ^a) mod (2 ^ b) + t. Proof. intros a b r t (H1, H2) H3 (H4, H5). assert (t < 2 ^ b). apply Z.lt_le_trans with (1:= H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. rewrite Zplus_mod; auto with zarith. rewrite Zmod_small with (a := t); auto with zarith. apply Zmod_small; auto with zarith. split; auto with zarith. assert (0 <= 2 ^a * r); auto with zarith. apply Z.add_nonneg_nonneg; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. pattern (2 ^ b) at 2;replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring. apply Z.add_le_lt_mono; auto with zarith. replace b with ((b - a) + a); try ring. rewrite Zpower_exp; auto with zarith. pattern (2 ^a) at 4; rewrite <- (Z.mul_1_l (2 ^a)); try rewrite <- Z.mul_sub_distr_r. repeat rewrite (fun x => Z.mul_comm x (2 ^ a)); rewrite Zmult_mod_distr_l; auto with zarith. apply Z.mul_le_mono_nonneg_l; auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. Qed. Theorem Zdiv_shift_r: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a -> (r * 2 ^a + t) / (2 ^ b) = (r * 2 ^a) / (2 ^ b). Proof. intros a b r t (H1, H2) H3 (H4, H5). assert (Eq: t < 2 ^ b); auto with zarith. apply Z.lt_le_trans with (1 := H5); auto with zarith. apply Zpower_le_monotone; auto with zarith. pattern (r * 2 ^ a) at 1; rewrite Z_div_mod_eq with (b := 2 ^ b); auto with zarith. rewrite <- Z.add_assoc. rewrite <- Zmod_shift_r; auto with zarith. rewrite (Z.mul_comm (2 ^ b)); rewrite Z_div_plus_full_l; auto with zarith. rewrite (fun x y => @Zdiv_small (x mod y)); auto with zarith. match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end; auto with zarith. Qed. Lemma shift_unshift_mod : forall n p a, 0 <= a < 2^n -> 0 <= p <= n -> a * 2^p = a / 2^(n - p) * 2^n + (a*2^p) mod 2^n. Proof. intros n p a H1 H2. pattern (a*2^p) at 1;replace (a*2^p) with (a*2^p/2^n * 2^n + a*2^p mod 2^n). 2:symmetry;rewrite (Z.mul_comm (a*2^p/2^n));apply Z_div_mod_eq. replace (a * 2 ^ p / 2 ^ n) with (a / 2 ^ (n - p));trivial. replace (2^n) with (2^(n-p)*2^p). symmetry;apply Zdiv_mult_cancel_r. destruct H1;trivial. cut (0 < 2^p); auto with zarith. rewrite <- Zpower_exp. replace (n-p+p) with n;trivial. ring. omega. omega. apply Z.lt_gt. apply Z.pow_pos_nonneg;auto with zarith. Qed. Lemma shift_unshift_mod_2 : forall n p a, 0 <= p <= n -> ((a * 2 ^ (n - p)) mod (2^n) / 2 ^ (n - p)) mod (2^n) = a mod 2 ^ p. Proof. intros. rewrite Zmod_small. rewrite Zmod_eq by (auto with zarith). unfold Z.sub at 1. rewrite Z_div_plus_l by (auto with zarith). assert (2^n = 2^(n-p)*2^p). rewrite <- Zpower_exp by (auto with zarith). replace (n-p+p) with n; auto with zarith. rewrite H0. rewrite <- Zdiv_Zdiv, Z_div_mult by (auto with zarith). rewrite (Z.mul_comm (2^(n-p))), Z.mul_assoc. rewrite <- Z.mul_opp_l. rewrite Z_div_mult by (auto with zarith). symmetry; apply Zmod_eq; auto with zarith. remember (a * 2 ^ (n - p)) as b. destruct (Z_mod_lt b (2^n)); auto with zarith. split. apply Z_div_pos; auto with zarith. apply Zdiv_lt_upper_bound; auto with zarith. apply Z.lt_le_trans with (2^n); auto with zarith. rewrite <- (Z.mul_1_r (2^n)) at 1. apply Z.mul_le_mono_nonneg; auto with zarith. cut (0 < 2 ^ (n-p)); auto with zarith. Qed. Lemma div_le_0 : forall p x, 0 <= x -> 0 <= x / 2 ^ p. Proof. intros p x Hle;destruct (Z_le_gt_dec 0 p). apply Zdiv_le_lower_bound;auto with zarith. replace (2^p) with 0. destruct x;compute;intro;discriminate. destruct p;trivial;discriminate. Qed. Lemma div_lt : forall p x y, 0 <= x < y -> x / 2^p < y. Proof. intros p x y H;destruct (Z_le_gt_dec 0 p). apply Zdiv_lt_upper_bound;auto with zarith. apply Z.lt_le_trans with y;auto with zarith. rewrite <- (Z.mul_1_r y);apply Z.mul_le_mono_nonneg;auto with zarith. assert (0 < 2^p);auto with zarith. replace (2^p) with 0. destruct x;change (0 0 < Z.gcd a b -> 0 < b / Z.gcd a b. Proof. intros Hb Hg. assert (H : 0 <= b / Z.gcd a b) by (apply Z.div_pos; auto with zarith). Z.le_elim H; trivial. rewrite (Zdivide_Zdiv_eq (Z.gcd a b) b), <- H, Z.mul_0_r in Hb; auto using Z.gcd_divide_r with zarith. Qed. Theorem Zdiv_neg a b: a < 0 -> 0 < b -> a / b < 0. Proof. intros Ha Hb. assert (b > 0) by omega. generalize (Z_mult_div_ge a _ H); intros. assert (b * (a / b) < 0)%Z. apply Z.le_lt_trans with a; auto with zarith. destruct b; try (compute in Hb; discriminate). destruct (a/Zpos p)%Z. compute in H1; discriminate. compute in H1; discriminate. compute; auto. Qed. Lemma Zdiv_gcd_zero : forall a b, b / Z.gcd a b = 0 -> b <> 0 -> Z.gcd a b = 0. Proof. intros. generalize (Zgcd_is_gcd a b); destruct 1. destruct H2 as (k,Hk). generalize H; rewrite Hk at 1. destruct (Z.eq_dec (Z.gcd a b) 0) as [H'|H']; auto. rewrite Z_div_mult_full; auto. intros; subst k; simpl in *; subst b; elim H0; auto. Qed. Lemma Zgcd_mult_rel_prime : forall a b c, Z.gcd a c = 1 -> Z.gcd b c = 1 -> Z.gcd (a*b) c = 1. Proof. intros. rewrite Zgcd_1_rel_prime in *. apply rel_prime_sym; apply rel_prime_mult; apply rel_prime_sym; auto. Qed. Lemma Zcompare_gt : forall (A:Type)(a a':A)(p q:Z), match (p?=q)%Z with Gt => a | _ => a' end = if Z_le_gt_dec p q then a' else a. Proof. intros. destruct Z_le_gt_dec as [H|H]. red in H. destruct (p?=q)%Z; auto; elim H; auto. rewrite H; auto. Qed. Theorem Zbounded_induction : (forall Q : Z -> Prop, forall b : Z, Q 0 -> (forall n, 0 <= n -> n < b - 1 -> Q n -> Q (n + 1)) -> forall n, 0 <= n -> n < b -> Q n)%Z. Proof. intros Q b Q0 QS. set (Q' := fun n => (n < b /\ Q n) \/ (b <= n)). assert (H : forall n, 0 <= n -> Q' n). apply natlike_rec2; unfold Q'. destruct (Z.le_gt_cases b 0) as [H | H]. now right. left; now split. intros n H IH. destruct IH as [[IH1 IH2] | IH]. destruct (Z.le_gt_cases (b - 1) n) as [H1 | H1]. right; auto with zarith. left. split; [auto with zarith | now apply (QS n)]. right; auto with zarith. unfold Q' in *; intros n H1 H2. destruct (H n H1) as [[H3 H4] | H3]. assumption. now apply Z.le_ngt in H3. Qed. Lemma Zsquare_le x : x <= x*x. Proof. destruct (Z.lt_ge_cases 0 x). - rewrite <- Z.mul_1_l at 1. rewrite <- Z.mul_le_mono_pos_r; auto with zarith. - pose proof (Z.square_nonneg x); auto with zarith. Qed.