(* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* positive | xO : positive -> positive | xH : positive. (** Declare binding key for scope positive_scope *) Delimit Scope positive_scope with positive. (** Automatically open scope positive_scope for type positive, xO and xI *) Bind Scope positive_scope with positive. Arguments Scope xO [positive_scope]. Arguments Scope xI [positive_scope]. (** Postfix notation for positive numbers, allowing to mimic the position of bits in a big-endian representation. For instance, we can write 1~1~0 instead of (xO (xI xH)) for the number 6 (which is 110 in binary notation). *) Notation "p ~ 1" := (xI p) (at level 7, left associativity, format "p '~' '1'") : positive_scope. Notation "p ~ 0" := (xO p) (at level 7, left associativity, format "p '~' '0'") : positive_scope. Open Local Scope positive_scope. (* In the current file, [xH] cannot yet be written as [1], since the interpretation of positive numerical constants is not available yet. We fix this here with an ad-hoc temporary notation. *) Notation Local "1" := xH (at level 7). (** Successor *) Fixpoint Psucc (x:positive) : positive := match x with | p~1 => (Psucc p)~0 | p~0 => p~1 | 1 => 1~0 end. (** Addition *) Set Boxed Definitions. Fixpoint Pplus (x y:positive) : positive := match x, y with | p~1, q~1 => (Pplus_carry p q)~0 | p~1, q~0 => (Pplus p q)~1 | p~1, 1 => (Psucc p)~0 | p~0, q~1 => (Pplus p q)~1 | p~0, q~0 => (Pplus p q)~0 | p~0, 1 => p~1 | 1, q~1 => (Psucc q)~0 | 1, q~0 => q~1 | 1, 1 => 1~0 end with Pplus_carry (x y:positive) : positive := match x, y with | p~1, q~1 => (Pplus_carry p q)~1 | p~1, q~0 => (Pplus_carry p q)~0 | p~1, 1 => (Psucc p)~1 | p~0, q~1 => (Pplus_carry p q)~0 | p~0, q~0 => (Pplus p q)~1 | p~0, 1 => (Psucc p)~0 | 1, q~1 => (Psucc q)~1 | 1, q~0 => (Psucc q)~0 | 1, 1 => 1~1 end. Unset Boxed Definitions. Infix "+" := Pplus : positive_scope. (** From binary positive numbers to Peano natural numbers *) Fixpoint Pmult_nat (x:positive) (pow2:nat) : nat := match x with | p~1 => (pow2 + Pmult_nat p (pow2 + pow2))%nat | p~0 => Pmult_nat p (pow2 + pow2)%nat | 1 => pow2 end. Definition nat_of_P (x:positive) := Pmult_nat x (S O). (** From Peano natural numbers to binary positive numbers *) Fixpoint P_of_succ_nat (n:nat) : positive := match n with | O => 1 | S x => Psucc (P_of_succ_nat x) end. (** Operation x -> 2*x-1 *) Fixpoint Pdouble_minus_one (x:positive) : positive := match x with | p~1 => p~0~1 | p~0 => (Pdouble_minus_one p)~1 | 1 => 1 end. (** Predecessor *) Definition Ppred (x:positive) := match x with | p~1 => p~0 | p~0 => Pdouble_minus_one p | 1 => 1 end. (** An auxiliary type for subtraction *) Inductive positive_mask : Set := | IsNul : positive_mask | IsPos : positive -> positive_mask | IsNeg : positive_mask. (** Operation x -> 2*x+1 *) Definition Pdouble_plus_one_mask (x:positive_mask) := match x with | IsNul => IsPos 1 | IsNeg => IsNeg | IsPos p => IsPos p~1 end. (** Operation x -> 2*x *) Definition Pdouble_mask (x:positive_mask) := match x with | IsNul => IsNul | IsNeg => IsNeg | IsPos p => IsPos p~0 end. (** Operation x -> 2*x-2 *) Definition Pdouble_minus_two (x:positive) := match x with | p~1 => IsPos p~0~0 | p~0 => IsPos (Pdouble_minus_one p)~0 | 1 => IsNul end. (** Subtraction of binary positive numbers into a positive numbers mask *) Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask := match x, y with | p~1, q~1 => Pdouble_mask (Pminus_mask p q) | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q) | p~1, 1 => IsPos p~0 | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q) | p~0, q~0 => Pdouble_mask (Pminus_mask p q) | p~0, 1 => IsPos (Pdouble_minus_one p) | 1, 1 => IsNul | 1, _ => IsNeg end with Pminus_mask_carry (x y:positive) {struct y} : positive_mask := match x, y with | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q) | p~1, q~0 => Pdouble_mask (Pminus_mask p q) | p~1, 1 => IsPos (Pdouble_minus_one p) | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q) | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q) | p~0, 1 => Pdouble_minus_two p | 1, _ => IsNeg end. (** Subtraction of binary positive numbers x and y, returns 1 if x<=y *) Definition Pminus (x y:positive) := match Pminus_mask x y with | IsPos z => z | _ => 1 end. Infix "-" := Pminus : positive_scope. (** Multiplication on binary positive numbers *) Fixpoint Pmult (x y:positive) : positive := match x with | p~1 => y + (Pmult p y)~0 | p~0 => (Pmult p y)~0 | 1 => y end. Infix "*" := Pmult : positive_scope. (** Division by 2 rounded below but for 1 *) Definition Pdiv2 (z:positive) := match z with | 1 => 1 | p~0 => p | p~1 => p end. Infix "/" := Pdiv2 : positive_scope. (** Comparison on binary positive numbers *) Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison := match x, y with | p~1, q~1 => Pcompare p q r | p~1, q~0 => Pcompare p q Gt | p~1, 1 => Gt | p~0, q~1 => Pcompare p q Lt | p~0, q~0 => Pcompare p q r | p~0, 1 => Gt | 1, q~1 => Lt | 1, q~0 => Lt | 1, 1 => r end. Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope. Definition Plt (x y:positive) := (Pcompare x y Eq) = Lt. Definition Pgt (x y:positive) := (Pcompare x y Eq) = Gt. Definition Ple (x y:positive) := (Pcompare x y Eq) <> Gt. Definition Pge (x y:positive) := (Pcompare x y Eq) <> Lt. Infix "<=" := Ple : positive_scope. Infix "<" := Plt : positive_scope. Infix ">=" := Pge : positive_scope. Infix ">" := Pgt : positive_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope. Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope. Notation "x < y < z" := (x < y /\ y < z) : positive_scope. Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope. Definition Pmin (p p' : positive) := match Pcompare p p' Eq with | Lt | Eq => p | Gt => p' end. Definition Pmax (p p' : positive) := match Pcompare p p' Eq with | Lt | Eq => p' | Gt => p end. (********************************************************************) (** Boolean equality *) Fixpoint Peqb (x y : positive) {struct y} : bool := match x, y with | 1, 1 => true | p~1, q~1 => Peqb p q | p~0, q~0 => Peqb p q | _, _ => false end. (**********************************************************************) (** Decidability of equality on binary positive numbers *) Lemma positive_eq_dec : forall x y: positive, {x = y} + {x <> y}. Proof. decide equality. Defined. (* begin hide *) Corollary ZL11 : forall p:positive, p = 1 \/ p <> 1. Proof. intro; edestruct positive_eq_dec; eauto. Qed. (* end hide *) (**********************************************************************) (** Properties of successor on binary positive numbers *) (** Specification of [xI] in term of [Psucc] and [xO] *) Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0. Proof. reflexivity. Qed. Lemma Psucc_discr : forall p:positive, p <> Psucc p. Proof. destruct p; discriminate. Qed. (** Successor and double *) Lemma Psucc_o_double_minus_one_eq_xO : forall p:positive, Psucc (Pdouble_minus_one p) = p~0. Proof. induction p; simpl; f_equal; auto. Qed. Lemma Pdouble_minus_one_o_succ_eq_xI : forall p:positive, Pdouble_minus_one (Psucc p) = p~1. Proof. induction p; simpl; f_equal; auto. Qed. Lemma xO_succ_permute : forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0). Proof. induction p; simpl; auto. Qed. Lemma double_moins_un_xO_discr : forall p:positive, Pdouble_minus_one p <> p~0. Proof. destruct p; discriminate. Qed. (** Successor and predecessor *) Lemma Psucc_not_one : forall p:positive, Psucc p <> 1. Proof. destruct p; discriminate. Qed. Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p. Proof. intros [[p|p| ]|[p|p| ]| ]; simpl; auto. f_equal; apply Pdouble_minus_one_o_succ_eq_xI. Qed. Lemma Psucc_pred : forall p:positive, p = 1 \/ Psucc (Ppred p) = p. Proof. induction p; simpl; auto. right; apply Psucc_o_double_minus_one_eq_xO. Qed. Ltac destr_eq H := discriminate H || (try (injection H; clear H; intro H)). (** Injectivity of successor *) Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q. Proof. induction p; intros [q|q| ] H; simpl in *; destr_eq H; f_equal; auto. elim (Psucc_not_one p); auto. elim (Psucc_not_one q); auto. Qed. (**********************************************************************) (** Properties of addition on binary positive numbers *) (** Specification of [Psucc] in term of [Pplus] *) Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + 1. Proof. destruct p; reflexivity. Qed. Lemma Pplus_one_succ_l : forall p:positive, Psucc p = 1 + p. Proof. destruct p; reflexivity. Qed. (** Specification of [Pplus_carry] *) Theorem Pplus_carry_spec : forall p q:positive, Pplus_carry p q = Psucc (p + q). Proof. induction p; destruct q; simpl; f_equal; auto. Qed. (** Commutativity *) Theorem Pplus_comm : forall p q:positive, p + q = q + p. Proof. induction p; destruct q; simpl; f_equal; auto. rewrite 2 Pplus_carry_spec; f_equal; auto. Qed. (** Permutation of [Pplus] and [Psucc] *) Theorem Pplus_succ_permute_r : forall p q:positive, p + Psucc q = Psucc (p + q). Proof. induction p; destruct q; simpl; f_equal; auto using Pplus_one_succ_r; rewrite Pplus_carry_spec; auto. Qed. Theorem Pplus_succ_permute_l : forall p q:positive, Psucc p + q = Psucc (p + q). Proof. intros p q; rewrite Pplus_comm, (Pplus_comm p); apply Pplus_succ_permute_r. Qed. Theorem Pplus_carry_pred_eq_plus : forall p q:positive, q <> 1 -> Pplus_carry p (Ppred q) = p + q. Proof. intros p q H; rewrite Pplus_carry_spec, <- Pplus_succ_permute_r; f_equal. destruct (Psucc_pred q); [ elim H; assumption | assumption ]. Qed. (** No neutral for addition on strictly positive numbers *) Lemma Pplus_no_neutral : forall p q:positive, q + p <> p. Proof. induction p as [p IHp|p IHp| ]; intros [q|q| ] H; destr_eq H; apply (IHp q H). Qed. Lemma Pplus_carry_no_neutral : forall p q:positive, Pplus_carry q p <> Psucc p. Proof. intros p q H; elim (Pplus_no_neutral p q). apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption. Qed. (** Simplification *) Lemma Pplus_carry_plus : forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s. Proof. intros p q r s H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec; assumption. Qed. Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q. Proof. intros p q r; revert p q; induction r. intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto using Pplus_carry_plus; contradict H; auto using Pplus_carry_no_neutral. intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto; contradict H; auto using Pplus_no_neutral. intros p q H; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption. Qed. Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r. Proof. intros p q r H; apply Pplus_reg_r with (r:=p). rewrite (Pplus_comm r), (Pplus_comm q); assumption. Qed. Lemma Pplus_carry_reg_r : forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q. Proof. intros p q r H; apply Pplus_reg_r with (r:=r); apply Pplus_carry_plus; assumption. Qed. Lemma Pplus_carry_reg_l : forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r. Proof. intros p q r H; apply Pplus_reg_r with (r:=p); rewrite (Pplus_comm r), (Pplus_comm q); apply Pplus_carry_plus; assumption. Qed. (** Addition on positive is associative *) Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r. Proof. induction p. intros [q|q| ] [r|r| ]; simpl; f_equal; auto; rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r, ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto. intros [q|q| ] [r|r| ]; simpl; f_equal; auto; rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r, ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto. intros p r; rewrite <- 2 Pplus_one_succ_l, Pplus_succ_permute_l; auto. Qed. (** Commutation of addition with the double of a positive number *) Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0. Proof. destruct n; destruct m; simpl; auto. Qed. Lemma Pplus_xI_double_minus_one : forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q. Proof. intros; change (p~1) with (p~0 + 1). rewrite <- Pplus_assoc, <- Pplus_one_succ_l, Psucc_o_double_minus_one_eq_xO. reflexivity. Qed. Lemma Pplus_xO_double_minus_one : forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q. Proof. induction p as [p IHp| p IHp| ]; destruct q; simpl; rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI, ?Pplus_xI_double_minus_one; try reflexivity. rewrite IHp; auto. rewrite <- Psucc_o_double_minus_one_eq_xO, Pplus_one_succ_l; reflexivity. Qed. (** Misc *) Lemma Pplus_diag : forall p:positive, p + p = p~0. Proof. induction p as [p IHp| p IHp| ]; simpl; try rewrite ?Pplus_carry_spec, ?IHp; reflexivity. Qed. (**********************************************************************) (** Peano induction and recursion on binary positive positive numbers *) (** (a nice proof from Conor McBride, see "The view from the left") *) Inductive PeanoView : positive -> Type := | PeanoOne : PeanoView 1 | PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p). Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) := match q in PeanoView x return PeanoView (x~0) with | PeanoOne => PeanoSucc _ PeanoOne | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q)) end. Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) := match q in PeanoView x return PeanoView (x~1) with | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne) | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q)) end. Fixpoint peanoView p : PeanoView p := match p return PeanoView p with | 1 => PeanoOne | p~0 => peanoView_xO p (peanoView p) | p~1 => peanoView_xI p (peanoView p) end. Definition PeanoView_iter (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p)) := (fix iter p (q:PeanoView p) : P p := match q in PeanoView p return P p with | PeanoOne => a | PeanoSucc _ q => f _ (iter _ q) end). Require Import Eqdep_dec EqdepFacts. Theorem eq_dep_eq_positive : forall (P:positive->Type) (p:positive) (x y:P p), eq_dep positive P p x p y -> x = y. Proof. apply eq_dep_eq_dec. decide equality. Qed. Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'. Proof. intros. induction q as [ | p q IHq ]. apply eq_dep_eq_positive. cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial. destruct p0; intros; discriminate. trivial. apply eq_dep_eq_positive. cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'. intro. destruct p; discriminate. intro. unfold p0 in H. apply Psucc_inj in H. generalize q'. rewrite H. intro. rewrite (IHq q'0). trivial. trivial. Qed. Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p)) (p:positive) := PeanoView_iter P a f p (peanoView p). Theorem Prect_succ : forall (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p)) (p:positive), Prect P a f (Psucc p) = f _ (Prect P a f p). Proof. intros. unfold Prect. rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))). trivial. Qed. Theorem Prect_base : forall (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p)), Prect P a f 1 = a. Proof. trivial. Qed. Definition Prec (P:positive->Set) := Prect P. (** Peano induction *) Definition Pind (P:positive->Prop) := Prect P. (** Peano case analysis *) Theorem Pcase : forall P:positive -> Prop, P 1 -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p. Proof. intros; apply Pind; auto. Qed. (**********************************************************************) (** Properties of multiplication on binary positive numbers *) (** One is right neutral for multiplication *) Lemma Pmult_1_r : forall p:positive, p * 1 = p. Proof. induction p; simpl; f_equal; auto. Qed. (** Successor and multiplication *) Lemma Pmult_Sn_m : forall n m : positive, (Psucc n) * m = m + n * m. Proof. induction n as [n IHn | n IHn | ]; simpl; intro m. rewrite IHn, Pplus_assoc, Pplus_diag, <-Pplus_xO; reflexivity. reflexivity. symmetry; apply Pplus_diag. Qed. (** Right reduction properties for multiplication *) Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0. Proof. intros p q; induction p; simpl; do 2 (f_equal; auto). Qed. Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0. Proof. intros p q; induction p as [p IHp|p IHp| ]; simpl; f_equal; auto. rewrite IHp, 2 Pplus_assoc, (Pplus_comm p); reflexivity. Qed. (** Commutativity of multiplication *) Theorem Pmult_comm : forall p q:positive, p * q = q * p. Proof. intros p q; induction q as [q IHq|q IHq| ]; simpl; try rewrite <- IHq; auto using Pmult_xI_permute_r, Pmult_xO_permute_r, Pmult_1_r. Qed. (** Distributivity of multiplication over addition *) Theorem Pmult_plus_distr_l : forall p q r:positive, p * (q + r) = p * q + p * r. Proof. intros p q r; induction p as [p IHp|p IHp| ]; simpl. rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0). change ((p*q+p*r)~0) with (m+n). rewrite 2 Pplus_assoc; f_equal. rewrite <- 2 Pplus_assoc; f_equal. apply Pplus_comm. f_equal; auto. reflexivity. Qed. Theorem Pmult_plus_distr_r : forall p q r:positive, (p + q) * r = p * r + q * r. Proof. intros p q r; do 3 rewrite Pmult_comm with (q:=r); apply Pmult_plus_distr_l. Qed. (** Associativity of multiplication *) Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r. Proof. induction p as [p IHp| p IHp | ]; simpl; intros q r. rewrite IHp; rewrite Pmult_plus_distr_r; reflexivity. rewrite IHp; reflexivity. reflexivity. Qed. (** Parity properties of multiplication *) Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r. Proof. intros p q r; induction r; try discriminate. rewrite 2 Pmult_xO_permute_r; intro H; destr_eq H; auto. Qed. Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q. Proof. intros p q; induction q; try discriminate. rewrite Pmult_xO_permute_r; injection; assumption. Qed. (** Simplification properties of multiplication *) Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q. Proof. induction p as [p IHp| p IHp| ]; intros [q|q| ] r H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind. apply IHp with (r~0); simpl in *; rewrite 2 Pmult_xO_permute_r; apply Pplus_reg_l with (1:=H). apply Pmult_xI_mult_xO_discr with (1:=H). simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1:=H). symmetry in H; apply Pmult_xI_mult_xO_discr with (1:=H). apply IHp with (r~0); simpl; rewrite 2 Pmult_xO_permute_r; assumption. apply Pmult_xO_discr with (1:= H). simpl in H; symmetry in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1:=H). symmetry in H; apply Pmult_xO_discr with (1:=H). Qed. Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q. Proof. intros p q r H; apply Pmult_reg_r with (r:=r). rewrite (Pmult_comm p), (Pmult_comm q); assumption. Qed. (** Inversion of multiplication *) Lemma Pmult_1_inversion_l : forall p q:positive, p * q = 1 -> p = 1. Proof. intros [p|p| ] [q|q| ] H; destr_eq H; auto. Qed. (*********************************************************************) (** Properties of boolean equality *) Theorem Peqb_refl : forall x:positive, Peqb x x = true. Proof. induction x; auto. Qed. Theorem Peqb_true_eq : forall x y:positive, Peqb x y = true -> x=y. Proof. induction x; destruct y; simpl; intros; try discriminate. f_equal; auto. f_equal; auto. reflexivity. Qed. Theorem Peqb_eq : forall x y : positive, Peqb x y = true <-> x=y. Proof. split. apply Peqb_true_eq. intros; subst; apply Peqb_refl. Qed. (**********************************************************************) (** Properties of comparison on binary positive numbers *) Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq. induction p; auto. Qed. (* A generalization of Pcompare_refl *) Theorem Pcompare_refl_id : forall (p : positive) (r : comparison), (p ?= p) r = r. induction p; auto. Qed. Theorem Pcompare_not_Eq : forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq. Proof. induction p as [p IHp| p IHp| ]; intros [q| q| ]; split; simpl; auto; discriminate || (elim (IHp q); auto). Qed. Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q. Proof. induction p; intros [q| q| ] H; simpl in *; auto; try discriminate H; try (f_equal; auto; fail). destruct (Pcompare_not_Eq p q) as (H',_); elim H'; auto. destruct (Pcompare_not_Eq p q) as (_,H'); elim H'; auto. Qed. Lemma Pcompare_eq_iff : forall p q:positive, (p ?= q) Eq = Eq <-> p = q. Proof. split. apply Pcompare_Eq_eq. intros; subst; apply Pcompare_refl. Qed. Lemma Pcompare_Gt_Lt : forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt. Proof. induction p; intros [q|q| ] H; simpl; auto; discriminate. Qed. Lemma Pcompare_eq_Lt : forall p q : positive, (p ?= q) Eq = Lt <-> (p ?= q) Gt = Lt. Proof. intros p q; split; [| apply Pcompare_Gt_Lt]. revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate. Qed. Lemma Pcompare_Lt_Gt : forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt. Proof. induction p; intros [q|q| ] H; simpl; auto; discriminate. Qed. Lemma Pcompare_eq_Gt : forall p q : positive, (p ?= q) Eq = Gt <-> (p ?= q) Lt = Gt. Proof. intros p q; split; [| apply Pcompare_Lt_Gt]. revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate. Qed. Lemma Pcompare_Lt_Lt : forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q. Proof. induction p as [p IHp| p IHp| ]; intros [q|q| ] H; simpl in *; auto; destruct (IHp q H); subst; auto. Qed. Lemma Pcompare_Lt_eq_Lt : forall p q:positive, (p ?= q) Lt = Lt <-> (p ?= q) Eq = Lt \/ p = q. Proof. intros p q; split; [apply Pcompare_Lt_Lt |]. intros [H|H]; [|subst; apply Pcompare_refl_id]. revert q H; induction p; intros [q|q| ] H; simpl in *; auto; discriminate. Qed. Lemma Pcompare_Gt_Gt : forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q. Proof. induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto; destruct (IHp q H); subst; auto. Qed. Lemma Pcompare_Gt_eq_Gt : forall p q:positive, (p ?= q) Gt = Gt <-> (p ?= q) Eq = Gt \/ p = q. Proof. intros p q; split; [apply Pcompare_Gt_Gt |]. intros [H|H]; [|subst; apply Pcompare_refl_id]. revert q H; induction p; intros [q|q| ] H; simpl in *; auto; discriminate. Qed. Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt. Proof. destruct r; auto. Qed. Ltac ElimPcompare c1 c2 := elim (Dcompare ((c1 ?= c2) Eq)); [ idtac | let x := fresh "H" in (intro x; case x; clear x) ]. Lemma Pcompare_antisym : forall (p q:positive) (r:comparison), CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r). Proof. induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto; rewrite IHp; auto. Qed. Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt. Proof. intros p q H; change Eq with (CompOpp Eq). rewrite <- Pcompare_antisym, H; reflexivity. Qed. Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt. Proof. intros p q H; change Eq with (CompOpp Eq). rewrite <- Pcompare_antisym, H; reflexivity. Qed. Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq. Proof. intros p q H; change Eq with (CompOpp Eq). rewrite <- Pcompare_antisym, H; reflexivity. Qed. Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq). Proof. intros; change Eq at 1 with (CompOpp Eq). symmetry; apply Pcompare_antisym. Qed. Lemma Pcompare_spec : forall p q, CompSpec eq Plt p q ((p ?= q) Eq). Proof. intros. destruct ((p ?= q) Eq) as [ ]_eqn; constructor. apply Pcompare_Eq_eq; auto. auto. apply ZC1; auto. Qed. (** Comparison and the successor *) Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt. Proof. induction p; simpl in *; [ elim (Pcompare_eq_Lt p (Psucc p)); auto | apply Pcompare_refl_id | reflexivity]. Qed. Theorem Pcompare_p_Sq : forall p q : positive, (p ?= Psucc q) Eq = Lt <-> (p ?= q) Eq = Lt \/ p = q. Proof. intros p q; split. (* -> *) revert p q; induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; try (left; reflexivity); try (right; reflexivity). destruct (IHp q (Pcompare_Gt_Lt _ _ H)); subst; auto. destruct (Pcompare_eq_Lt p q); auto. destruct p; discriminate. left; destruct (IHp q H); [ elim (Pcompare_Lt_eq_Lt p q); auto | subst; apply Pcompare_refl_id]. destruct (Pcompare_Lt_Lt p q H); subst; auto. destruct p; discriminate. (* <- *) intros [H|H]; [|subst; apply Pcompare_p_Sp]. revert q H; induction p; intros [q|q| ] H; simpl in *; auto; try discriminate. destruct (Pcompare_eq_Lt p (Psucc q)); auto. apply Pcompare_Gt_Lt; auto. destruct (Pcompare_Lt_Lt p q H); subst; auto using Pcompare_p_Sp. destruct (Pcompare_Lt_eq_Lt p q); auto. Qed. (** 1 is the least positive number *) Lemma Pcompare_1 : forall p, ~ (p ?= 1) Eq = Lt. Proof. destruct p; discriminate. Qed. (** Properties of the strict order on positive numbers *) Lemma Plt_1 : forall p, ~ p < 1. Proof. exact Pcompare_1. Qed. Lemma Plt_lt_succ : forall n m : positive, n < m -> n < Psucc m. Proof. unfold Plt; intros n m H; apply <- Pcompare_p_Sq; auto. Qed. Lemma Plt_irrefl : forall p : positive, ~ p < p. Proof. unfold Plt; intro p; rewrite Pcompare_refl; discriminate. Qed. Lemma Plt_trans : forall n m p : positive, n < m -> m < p -> n < p. Proof. intros n m p; induction p using Pind; intros H H0. elim (Plt_1 _ H0). apply Plt_lt_succ. destruct (Pcompare_p_Sq m p) as (H',_); destruct (H' H0); subst; auto. Qed. Theorem Plt_ind : forall (A : positive -> Prop) (n : positive), A (Psucc n) -> (forall m : positive, n < m -> A m -> A (Psucc m)) -> forall m : positive, n < m -> A m. Proof. intros A n AB AS m. induction m using Pind; intros H. elim (Plt_1 _ H). destruct (Pcompare_p_Sq n m) as (H',_); destruct (H' H); subst; auto. Qed. Lemma Ple_lteq : forall p q, p <= q <-> p < q \/ p = q. Proof. unfold Ple, Plt. intros. generalize (Pcompare_eq_iff p q). destruct ((p ?= q) Eq); intuition; discriminate. Qed. (**********************************************************************) (** Properties of subtraction on binary positive numbers *) Lemma Ppred_minus : forall p, Ppred p = Pminus p 1. Proof. destruct p; auto. Qed. Definition Ppred_mask (p : positive_mask) := match p with | IsPos 1 => IsNul | IsPos q => IsPos (Ppred q) | IsNul => IsNeg | IsNeg => IsNeg end. Lemma Pminus_mask_succ_r : forall p q : positive, Pminus_mask p (Psucc q) = Pminus_mask_carry p q. Proof. induction p ; destruct q; simpl; f_equal; auto; destruct p; auto. Qed. Theorem Pminus_mask_carry_spec : forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q). Proof. induction p as [p IHp|p IHp| ]; destruct q; simpl; try reflexivity; try rewrite IHp; destruct (Pminus_mask p q) as [|[r|r| ]|] || destruct p; auto. Qed. Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q). Proof. intros p q; unfold Pminus; rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec. destruct (Pminus_mask p q) as [|[r|r| ]|]; auto. Qed. Lemma double_eq_zero_inversion : forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul. Proof. destruct p; simpl; intros; trivial; discriminate. Qed. Lemma double_plus_one_zero_discr : forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul. Proof. destruct p; discriminate. Qed. Lemma double_plus_one_eq_one_inversion : forall p:positive_mask, Pdouble_plus_one_mask p = IsPos 1 -> p = IsNul. Proof. destruct p; simpl; intros; trivial; discriminate. Qed. Lemma double_eq_one_discr : forall p:positive_mask, Pdouble_mask p <> IsPos 1. Proof. destruct p; discriminate. Qed. Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul. Proof. induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto. Qed. Lemma Pminus_mask_carry_diag : forall p, Pminus_mask_carry p p = IsNeg. Proof. induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto. Qed. Lemma Pminus_mask_IsNeg : forall p q:positive, Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg. Proof. induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto; try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H; specialize IHp with q. destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto. destruct (Pminus_mask p q); simpl; auto; try discriminate. destruct (Pminus_mask_carry p q); simpl; auto; try discriminate. destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto. Qed. Lemma ZL10 : forall p q:positive, Pminus_mask p q = IsPos 1 -> Pminus_mask_carry p q = IsNul. Proof. induction p; intros [q|q| ] H; simpl in *; try discriminate. elim (double_eq_one_discr _ H). rewrite (double_plus_one_eq_one_inversion _ H); auto. rewrite (double_plus_one_eq_one_inversion _ H); auto. elim (double_eq_one_discr _ H). destruct p; simpl; auto; discriminate. Qed. (** Properties of subtraction valid only for x>y *) Lemma Pminus_mask_Gt : forall p q:positive, (p ?= q) Eq = Gt -> exists h : positive, Pminus_mask p q = IsPos h /\ q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)). Proof. induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *; try discriminate H. (* p~1, q~1 *) destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto. repeat split; auto; right. destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]]. rewrite ZL10; subst; auto. rewrite W; simpl; destruct r; auto; elim NE; auto. (* p~1, q~0 *) destruct (Pcompare_Gt_Gt _ _ H) as [H'|H']; clear H; rename H' into H. destruct (IHp q H) as (r & U & V & W); exists (r~1); rewrite ?U, ?V; auto. exists 1; subst; rewrite Pminus_mask_diag; auto. (* p~1, 1 *) exists (p~0); auto. (* p~0, q~1 *) destruct (IHp q (Pcompare_Lt_Gt _ _ H)) as (r & U & V & W). destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]]. exists 1; subst; rewrite ZL10, Pplus_one_succ_r; auto. exists ((Ppred r)~1); rewrite W, Pplus_carry_pred_eq_plus, V; auto. (* p~0, q~0 *) destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto. repeat split; auto; right. destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]]. rewrite ZL10; subst; auto. rewrite W; simpl; destruct r; auto; elim NE; auto. (* p~0, 1 *) exists (Pdouble_minus_one p); repeat split; destruct p; simpl; auto. rewrite Psucc_o_double_minus_one_eq_xO; auto. Qed. Theorem Pplus_minus : forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p. Proof. intros p q H; destruct (Pminus_mask_Gt p q H) as (r & U & V & _). unfold Pminus; rewrite U; simpl; auto. Qed. (** When x Pminus_mask p q = IsNeg. Proof. unfold Plt; induction p as [p IHp|p IHp| ]; destruct q; simpl; intros; try discriminate; try rewrite IHp; auto. apply Pcompare_Gt_Lt; auto. destruct (Pcompare_Lt_Lt _ _ H). rewrite Pminus_mask_IsNeg; simpl; auto. subst; rewrite Pminus_mask_carry_diag; auto. Qed. Lemma Pminus_Lt : forall p q:positive, p p-q = 1. Proof. intros; unfold Plt, Pminus; rewrite Pminus_mask_Lt; auto. Qed. (** The substraction of x by x returns 1 *) Lemma Pminus_Eq : forall p:positive, p-p = 1. Proof. intros; unfold Pminus; rewrite Pminus_mask_diag; auto. Qed. (** Number of digits in a number *) Fixpoint Psize (p:positive) : nat := match p with | 1 => S O | p~1 => S (Psize p) | p~0 => S (Psize p) end. Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat. Proof. assert (le0 : forall n, (0<=n)%nat) by (induction n; auto). assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto). induction p; destruct q; simpl; auto; intros; try discriminate. intros; generalize (Pcompare_Gt_Lt _ _ H); auto. intros; destruct (Pcompare_Lt_Lt _ _ H); auto; subst; auto. Qed.